展示HN:模拟了一个GPT缓存错误,看到它被回显出来了

1作者: sks3831710 个月前原帖
我是一名高中毕业生,过去几周我一直在模拟GPT在长文本和迭代任务中的表现。在此期间,我发现了一个持续的缓存循环——失败的输出被重复使用,PDF渲染尝试导致了静默的令牌超载,而会话的退化随着时间的推移而加剧。 我公开记录了这一现象,并提出了可重复的行为和清理建议: → <a href="https://github.com/sks38317/gpt-cache-optimization/releases/tag/v2025.04.19">https://github.com/sks38317/gpt-cache-optimization/releases/...</a> 发布的亮点包括: - 在长输出(例如,PDF导出)期间的令牌刷新失败 - 失败缓存内容的递归重用 - 未清除内容导致的会话衰退 - 基于触发的清理逻辑提案 在发布之前,我向OpenAI支持团队提交了一条正式消息。以下是我写的一部分内容: &gt; “我分享了与GPT行为和系统设计相关的反馈和提案,包括: &gt; - 通过用户侧提示进行的内存模拟 &gt; - 缓存循环问题和PDF渲染不稳定性 &gt; - 一个建模系统性风险(SSR)和社会不稳定概率(SIP)的框架 &gt; - 受RFIM启发的代理级协调逻辑 &gt; &gt; 我只是想问这些内容是否曾在内部被审查或考虑过。” 他们的回复礼貌但含糊: &gt; “感谢您的深思熟虑的贡献。我们定期审查反馈,但无法提供确认、参考代码或跟踪状态。” 不久之后,我开始观察到GPT的响应微妙地反映了发布中的概念——循环抑制、内容清理触发器和减少的延续行为。 这可能只是巧合。 但如果独立贡献者在这些模式出现之前就已经在反映系统模式,并且得到了沉默的回应——也许这值得讨论。 如果你曾经历过反馈消失在虚空中而未被认可,你并不孤单。 *sks38317* (独立贡献者,记录那些悄然重现的事物)
查看原文
I&#x27;m a high school senior who spent the past few weeks simulating GPT behavior across long-form and iterative tasks. During that time, I discovered a persistent cache loop—where failed outputs would be reused, PDF render attempts caused silent token overloads, and session degradation worsened over time.<p>I documented this publicly with reproducible behavior and cleanup proposals: → <a href="https:&#x2F;&#x2F;github.com&#x2F;sks38317&#x2F;gpt-cache-optimization&#x2F;releases&#x2F;tag&#x2F;v2025.04.19">https:&#x2F;&#x2F;github.com&#x2F;sks38317&#x2F;gpt-cache-optimization&#x2F;releases&#x2F;...</a><p>Highlights from the release: - Token flushing failure during long outputs (e.g., PDF export) - Recursive reuse of failed cache content - Session decay from unpurged content - Trigger-based cleanup logic proposal<p>Before publishing, I submitted a formal message to OpenAI Support. Here&#x27;s part of what I wrote:<p>&gt; “I’ve shared feedback and proposals related to GPT behavior and system design, including: &gt; - Memory simulation via user-side prompts &gt; - Cache-loop issues and PDF rendering instability &gt; - A framework modeling Systemic Risk (SSR) and Social Instability Probability (SIP) &gt; - RFIM-inspired logic for agent-level coordination &gt; &gt; I only ask whether any of it was ever reviewed or considered internally.”<p>Their response was polite but opaque:<p>&gt; “Thanks for your thoughtful contribution. We regularly review feedback, &gt; but cannot provide confirmation, reference codes, or tracking status.”<p>Shortly after, I began observing GPT responses subtly reflecting concepts from the release—loop suppression, content cleanup triggers, and reduced carryover behavior.<p>It might be coincidence. But if independent contributors are echoing system patterns before they appear—and getting silence in return—maybe that’s worth discussing.<p>If you’ve had feedback disappear into the void and return uncredited, you’re not alone.<p>*sks38317* (independent contributor, archiving the things that quietly reappear)