展示HN:AGI遭遇结构性瓶颈——一个十亿美元的问题
本文正式定义了当前人工通用智能(AGI)所面临的结构性壁垒——而非技术性壁垒。
它表明,无论是扩展规模、强化学习,还是递归优化,都无法突破三个深层的认识论和形式约束:
1. 语义闭合——一个人工智能系统无法生成超出其内部框架所需意义的输出。
2. 框架创新的不可计算性——新的认知结构无法从现有结构内部计算得出。
3. 开放世界中的统计崩溃——在具有重尾不确定性的环境中,概率推理会崩溃。
这些并不是当今模型的局限性,而是算法认知本身固有的结构性边界——数学的、逻辑的、认识论的。
但这并不是对人工智能的否定。这是对必须面对的边界条件的清晰定义——并且,可能需要围绕其进行设计。
如果AGI在这道壁垒前失败,机会并不会结束——而是刚刚开始。
对于任何认真对待认知的人来说,这才是真正的前沿。
完整论文:
[https://philpapers.org/rec/SCHTAB-13](https://philpapers.org/rec/SCHTAB-13)
欢迎批评、挑战或反驳。
查看原文
This paper formally defines where current AGI hits a structural wall — not a technical one.<p>It shows that no amount of scaling, reinforcement learning, or recursive optimization will break through three deep epistemological and formal constraints:<p>1. Semantic Closure — An AI system cannot generate outputs that require meaning beyond its internal frame.<p>2. Non-Computability of Frame Innovation — New cognitive structures cannot be computed from within an existing one.<p>3. Statistical Breakdown in Open Worlds — Probabilistic inference collapses in environments with heavy-tailed uncertainty.<p>These aren’t limitations of today’s models. They’re structural boundaries inherent to algorithmic cognition itself — mathematical, logical, epistemological.<p>But this isn’t a rejection of AI. It’s a clear definition of the boundary condition that must be faced — and, potentially, designed around.<p>If AGI fails at this wall, the opportunity isn’t over — it’s just starting.
For anyone serious about cognition, this is the real frontier.<p>Full paper:<p><a href="https://philpapers.org/rec/SCHTAB-13" rel="nofollow">https://philpapers.org/rec/SCHTAB-13</a><p>Open to critique, challenge, or counterproofs.