项目经理:您是如何监控您的大型语言模型聊天机器人的?
想听听其他产品经理(或任何与大型语言模型驱动的聊天机器人密切合作的人)的看法:
- 你们目前是如何监控聊天机器人的性能、行为和输出质量的?
- 对你们来说,哪些指标或关键绩效指标(KPI)最为重要(例如,幻觉率、延迟、用户满意度、留存率)?
- 你们使用了哪些特定的工具或仪表板?有没有自制的解决方案?
- 在更新提示或模型时,你们是如何处理错误跟踪、反馈循环或回归问题的?
我们正在这个领域进行开发,希望更好地了解现实中的实践、痛点,以及对于大型语言模型产品来说“良好的监控”是什么样的。
期待听到你们的经验,提前感谢!
查看原文
Curious to hear from other Product Managers (or anyone working closely with LLM-powered chatbots):<p>- How are you currently monitoring the performance, behavior, and output quality of your chatbot?
- What metrics or KPIs matter most to you (e.g., hallucination rate, latency, user satisfaction, retention)?
- Are you using any specific tools or dashboards? Any homegrown solutions?
- How do you handle error tracking, feedback loops, or regression when updating prompts/models?<p>We’re building something in this space and want to better understand real-world practices, pain points, and what “good monitoring” looks like for LLM products.<p>Would love to learn from your experiences—thanks in advance!