展示HN:使用传统邮件和大型语言模型(LLMs)来自动化工作跟踪

2作者: adelowo大约 2 个月前原帖
我花了几天时间构建了Jobstack。其逻辑非常简单。你申请工作后会收到电子邮件,接着你会在面试、提问等过程中来回交换邮件,直到你接受了职位或被拒绝。 同时,申请数百个职位后,你很难清楚自己处于什么状态。使用Jobstack,你只需注册,获取一个独特的电子邮件地址,并将邮件转发到指定网址。它利用大型语言模型(LLMs)提取公司信息,尝试在线查找相关资料并将其呈现给你。 你转发的每一封邮件都会成为你与该公司的互动时间线的一部分。 它还会跟踪拒绝和录用的邮件,并为你提供一个友好的统计仪表板等功能。 目前我正在使用Gemini 2.5 Pro。不会以任何方式存储数据。提取后,数据会被丢弃。甚至与公司的“AI聊天”也不会被存储。 <a href="https://jobstack.me" rel="nofollow">https://jobstack.me</a>
查看原文
So I spent the last few days building Jobstack. The logic is quite simple. You apply to jobs and you get emails, you trade emails back and forth from interviews, questions and others until the role is either accepted or you are rejected.<p>Also easy to apply to hundreds of roles and not being to know where you stand easily. With Josbtack, you sign up, get a unique email and forward emails to the url. And it uses LLMs to extract company details , tries to find information online about them and presents that to you.<p>Every email you forward becomes part of your timeline with the company.<p>It also tracks rejection, offers from the emails too and gives you a nice stats dashboard amongst others.<p>Using Gemini 2.5 pro right now. No data stored not in any way. After extraction, it’s discarded. Even “AI chats with the company” aren’t stored<p><a href="https:&#x2F;&#x2F;jobstack.me" rel="nofollow">https:&#x2F;&#x2F;jobstack.me</a>