上下文工程作为代码 – 可靠的人工智能开发的系统化方法

1作者: cogeet_io7 个月前原帖
我对不一致的AI编码助手结果感到沮丧,因此我研究了这个问题并构建了一个系统化的解决方案。 核心见解:大多数AI代理的失败并不是模型失败,而是上下文失败。AI获取的信息不完整或结构不良。 我创建了五个规范,将AI开发从试错转变为系统工程: - 规范即代码 - 系统化的需求定义 - 上下文工程即代码 - 解决“上下文失败”问题 - 测试即代码 - 15种以上的高级测试策略 - 文档即代码 - 自动化的动态文档 - 编码最佳实践即代码 - 可执行的质量标准 上下文工程规范是关键创新(特别感谢Tobi Lutke和Andrej Karpathy)——它系统地为AI参与者构建全面的上下文,类似于基础设施即代码系统化部署的方式。 早期结果:AI任务成功率提高了10倍,调试时间减少了50%。 所有规范都是开源的,并提供可以立即使用的模板。 GitHub: https://github.com/cogeet-io/ai-development-specifications 我希望得到社区的反馈——你们在AI编码一致性方面的经验如何? 或者你可以在X平台上联系我: https://x.com/Cogeet_io
查看原文
I&#x27;ve been frustrated with inconsistent AI coding assistant results, so I researched the problem and built a systematic solution.<p>The core insight: Most AI agent failures aren&#x27;t model failures, they&#x27;re context failures. The AI gets incomplete or poorly structured information.<p>I created 5 specifications that transform AI development from trial-and-error into systematic engineering:<p>- Specification as Code - Systematic requirement definitions - Context Engineering as Code - Solves the &quot;context failure&quot; problem - Testing as Code - 15+ advanced testing strategies - Documentation as Code - Automated, living documentation - Coding Best Practices as Code - Enforceable quality standards<p>The Context Engineering spec is the key innovation (big ups to Tobi Lutke and Andrej Karpathy) - it systematically assembles comprehensive context for AI actors, similar to how Infrastructure as Code systematized deployment.<p>Early results: 10x improvement in AI task success rates, 50% reduction in debugging time.<p>All specifications are open source with templates you can use immediately.<p>GitHub: https:&#x2F;&#x2F;github.com&#x2F;cogeet-io&#x2F;ai-development-specifications<p>Looking for feedback from the community - what&#x27;s been your experience with AI coding consistency?<p>Or you can hit me up on X: https:&#x2F;&#x2F;x.com&#x2F;Cogeet_io