我使用探索性数据分析(EDA)和本地大语言模型(LLMs)来做出更好的产品决策。

2作者: pdxbug29 天前原帖
产品经理如何通过更智能的EDA提升AI/ML产品决策能力 好的决策始于好的问题。在产品经理决定构建哪些功能之前,一个被忽视但至关重要的步骤是:探索性数据分析(EDA)。 为什么?因为良好的EDA能够加速假设验证,帮助你提出正确的问题,测试假设,应用统计技术,揭示用户旅程的洞察,明确关键绩效指标(KPI)——最终帮助你做出更聪明、更具战略性和以用户为中心的决策。 多年来,我开发了一种轻量但有效的流程,帮助我和团队更快地推进——尤其是在以下情况下: - 处理不能离开本地网络的敏感或个人身份信息(PII)数据 - 处理非常大的数据集 - 精简与分析师和数据科学家的协作 以下是我常用的设置,节省了我们数天(如果不是数周)的时间: - 数据分析与可视化 — Jupyter Notebook + Pygwalker 不再需要导出CSV文件或在商业智能工具与原始数据之间来回切换。 - 本地大型语言模型(LLM)与LMStudio 当我需要帮助探索假设、撰写SQL或总结发现时。 这是我关于这个主题的LinkedIn帖子: https://www.linkedin.com/posts/peekay-chan-453102_pygwalker-lmstudio-productmanagement-activity-7352780192395792384-AFDe?utm_source=share&utm_medium=member_desktop&rcm=ACoAAAAD2_8BA9f2IpYDPZmflw9ziUIVH_mw7V8 希望听听其他产品经理、分析师和数据科学家是如何处理这个问题的。
查看原文
How product managers supercharge AI&#x2F;ML product decision-making with smarter EDA. Good decisions start with good questions. Before product managers decide what features to build, one of the most overlooked yet critical steps is: Exploratory Data Analysis (EDA)<p>Why? Because good EDA accelerates hypothesis validation, helps you ask the right questions, test assumptions, apply statistical techniques, uncover insights about the user journey, clarify KPIs — and ultimately helps you make smarter, more strategic, and user-centric decisions.<p>Over the years, I’ve developed a lightweight but effective process to help myself and teams move faster — especially when: dealing with sensitive or PII data that can’t leave local networks working with very large datasets streamlining collaboration with analysts and data scientists<p>Here’s my go-to setup that has saved us days (if not weeks): Data analysis &amp; visualization — Jupyter Notebook + Pygwalker No more exporting CSVs or bouncing between BI tools &amp; raw data. Local LLM with LMStudio When I need help exploring hypotheses, drafting SQL, or summarizing findings<p>Here is my LinkedIn post about this topic. https:&#x2F;&#x2F;www.linkedin.com&#x2F;posts&#x2F;peekay-chan-453102_pygwalker-lmstudio-productmanagement-activity-7352780192395792384-AFDe?utm_source=share&amp;utm_medium=member_desktop&amp;rcm=ACoAAAAD2_8BA9f2IpYDPZmflw9ziUIVH_mw7V8<p>Would love to hear how other PMs&#x2F;Analysts&#x2F;Data Scientist go about this.