为什么大型科技公司无法建立精确的产品数据库——而我们做到了

1作者: CTMinfo24 天前原帖
每个人都在谈论大数据。但在实际的工程、物流或国际贸易中,现实却是噪音、混乱和重复。 我们构建了CTMinfo作为一种替代范式:100%经过验证、明确无误、国际标准化的产品数据。不是预测,也不是人工智能的猜测。只有干净、结构化、经过人工验证的真相。 问题是:同一种产品有太多名称。 以AA电池为例。 它可能被称为: ``` Duracell Basic AA (LR6/ER14505/FR6/R6P) GP Ultra AA (LR6/ER14505/FR6/R6P) Philips LR6E4B/97 AA ``` 同样的产品,却有数十个名称。不同的目录结构,不同的分类系统。 这只是一个类别。全球有超过10,000个产品类别面临同样的混乱。 我们做得不同 我们引入了两个概念: 小数据 — 不是数百万条肮脏的条目,而是紧凑的、经过人工验证的数据结构。 开放技术 — 可解释、可验证、透明的逻辑。不是黑箱。 我们不是收集噪音,而是提取意义。每个产品都有一个独特的国际代码,例如31-0015-5643-1002-002,精确描述: ``` “电池类型AA,碱性,1.5 V,1500 mAh” ``` 这使得: ``` 跨制造商的通用搜索 真实同类产品的匹配 完整的目录标准化 清晰链接到真实的物理特性(电压、成分、尺寸) ``` 为什么大科技公司不能(也不会)做到这一点 因为他们的激励机制正好相反。 ``` 他们通过模糊性获利 — 你看到的相似产品越多,点击的广告就越多。 他们的系统建立在人工智能的近似值上,而不是物理属性。 他们依赖规模,而不是结构 — 并且无法轻易逆转方向。 ``` 要构建像CTMinfo这样的系统,你需要: ``` 理解供应链的工程师, 有过海关、物流和真实目录工作经验的人, 以及手动验证每个条目的领域专家。 ``` 再多的机器学习也无法取代这一点。 它可扩展吗? 是的 — 以不同的方式。 我们的商业模式很简单: ``` 每个经过验证的产品列表收费1美元/月 100%准确,无重复,无模糊逻辑 非常适合ERP、海关、政府采购、科学和自动化 ``` 从一个类别开始。建立信任。扩展。 例如:仅AA/AAA电池市场在全球每年达到200亿美元。我们的验证数据库可以在1年内由7名专家覆盖这一市场,并节省数百万的搜索、采购和错误减少成本。 这不仅仅是一个目录 这是对当前信息流动方式的结构性挑战。 CTMinfo是: ``` 超越政治,超越企业影响力 一个在技术上不可能撒谎的系统 一个基于真实世界数据构建的物理现实开放本体 ``` 我们不是在猜测用户的意思。我们描述的就是现实。 联系方式: Dmitriy Andriyanov ctminfocom@proton.me www.ctminfo.com Telegram: @ctminfocom
查看原文
Everyone talks about Big Data. But when it comes to actual engineering, logistics, or international trade — the reality is noise, chaos, and duplication.<p>We built CTMinfo as an alternative paradigm: 100% verified, unambiguous, internationally standardized product data. Not predictions. Not AI guesswork. Just clean, structured, human-validated truth. The problem: Too many names for the same thing<p>Take an AA battery, for example.<p>It may be called:<p><pre><code> Duracell Basic AA (LR6&#x2F;ER14505&#x2F;FR6&#x2F;R6P) GP Ultra AA (LR6&#x2F;ER14505&#x2F;FR6&#x2F;R6P) Philips LR6E4B&#x2F;97 AA </code></pre> Same product. Dozens of names. Different catalog structures. Different classification systems.<p>This is just one category. There are 10,000+ product categories worldwide facing the same chaos. What we did differently<p>We introduced two concepts:<p>SmallData — not millions of dirty entries, but compact, human-verified data structures. OpenTech — logic that is explainable, verifiable, transparent. Not a black box.<p>Instead of collecting noise, we extract meaning. Each product gets a unique international code, e.g. 31-0015-5643-1002-002, which precisely describes:<p><pre><code> “Battery type AA, alkaline, 1.5 V, 1500 mAh” </code></pre> This allows:<p><pre><code> universal search across manufacturers matching of real analogues complete catalog standardization clear link to real physical characteristics (voltage, composition, dimensions) </code></pre> Why Big Tech can’t (and won’t) do this<p>Because their incentives are the opposite.<p><pre><code> They monetize ambiguity — the more similar products you see, the more ads you click. Their systems are built on AI approximations, not physical properties. They rely on scale, not structure — and can’t easily reverse course. </code></pre> To build something like CTMinfo, you need:<p><pre><code> engineers who understand supply chains, people who’ve worked with customs, logistics, and real catalogs, and domain experts who verify each entry by hand. </code></pre> No amount of machine learning will replace that. Is it scalable?<p>Yes — in a different way.<p>Our business model is simple:<p><pre><code> $1&#x2F;month per verified product listing 100% accuracy, no duplicates, no fuzzy logic Perfect for ERPs, customs, government procurement, science, and automation </code></pre> Start with one category. Build trust. Expand.<p>Example: Just the AA&#x2F;AAA battery market is $20B&#x2F;year globally. Our verified database could cover it with 7 specialists in 1 year. And save millions in search, procurement, and error reduction. This is more than a catalog<p>This is a structural challenge to how information flows today.<p>CTMinfo is:<p><pre><code> beyond politics, beyond corporate influence a system where lying is technically impossible an open ontology of physical reality, built from real-world data </code></pre> We&#x27;re not here to guess what users meant. We describe what is.<p>Contact: Dmitriy Andriyanov ctminfocom@proton.me www.ctminfo.com Telegram: @ctminfocom