为什么大型科技公司无法建立精确的产品数据库——而我们做到了
每个人都在谈论大数据。但在实际的工程、物流或国际贸易中,现实却是噪音、混乱和重复。
我们构建了CTMinfo作为一种替代范式:100%经过验证、明确无误、国际标准化的产品数据。不是预测,也不是人工智能的猜测。只有干净、结构化、经过人工验证的真相。
问题是:同一种产品有太多名称。
以AA电池为例。
它可能被称为:
```
Duracell Basic AA (LR6/ER14505/FR6/R6P)
GP Ultra AA (LR6/ER14505/FR6/R6P)
Philips LR6E4B/97 AA
```
同样的产品,却有数十个名称。不同的目录结构,不同的分类系统。
这只是一个类别。全球有超过10,000个产品类别面临同样的混乱。
我们做得不同
我们引入了两个概念:
小数据 — 不是数百万条肮脏的条目,而是紧凑的、经过人工验证的数据结构。
开放技术 — 可解释、可验证、透明的逻辑。不是黑箱。
我们不是收集噪音,而是提取意义。每个产品都有一个独特的国际代码,例如31-0015-5643-1002-002,精确描述:
```
“电池类型AA,碱性,1.5 V,1500 mAh”
```
这使得:
```
跨制造商的通用搜索
真实同类产品的匹配
完整的目录标准化
清晰链接到真实的物理特性(电压、成分、尺寸)
```
为什么大科技公司不能(也不会)做到这一点
因为他们的激励机制正好相反。
```
他们通过模糊性获利 — 你看到的相似产品越多,点击的广告就越多。
他们的系统建立在人工智能的近似值上,而不是物理属性。
他们依赖规模,而不是结构 — 并且无法轻易逆转方向。
```
要构建像CTMinfo这样的系统,你需要:
```
理解供应链的工程师,
有过海关、物流和真实目录工作经验的人,
以及手动验证每个条目的领域专家。
```
再多的机器学习也无法取代这一点。
它可扩展吗?
是的 — 以不同的方式。
我们的商业模式很简单:
```
每个经过验证的产品列表收费1美元/月
100%准确,无重复,无模糊逻辑
非常适合ERP、海关、政府采购、科学和自动化
```
从一个类别开始。建立信任。扩展。
例如:仅AA/AAA电池市场在全球每年达到200亿美元。我们的验证数据库可以在1年内由7名专家覆盖这一市场,并节省数百万的搜索、采购和错误减少成本。
这不仅仅是一个目录
这是对当前信息流动方式的结构性挑战。
CTMinfo是:
```
超越政治,超越企业影响力
一个在技术上不可能撒谎的系统
一个基于真实世界数据构建的物理现实开放本体
```
我们不是在猜测用户的意思。我们描述的就是现实。
联系方式:
Dmitriy Andriyanov
ctminfocom@proton.me
www.ctminfo.com
Telegram: @ctminfocom
查看原文
Everyone talks about Big Data. But when it comes to actual engineering, logistics, or international trade — the reality is noise, chaos, and duplication.<p>We built CTMinfo as an alternative paradigm:
100% verified, unambiguous, internationally standardized product data.
Not predictions. Not AI guesswork. Just clean, structured, human-validated truth.
The problem: Too many names for the same thing<p>Take an AA battery, for example.<p>It may be called:<p><pre><code> Duracell Basic AA (LR6/ER14505/FR6/R6P)
GP Ultra AA (LR6/ER14505/FR6/R6P)
Philips LR6E4B/97 AA
</code></pre>
Same product. Dozens of names. Different catalog structures. Different classification systems.<p>This is just one category. There are 10,000+ product categories worldwide facing the same chaos.
What we did differently<p>We introduced two concepts:<p>SmallData — not millions of dirty entries, but compact, human-verified data structures.
OpenTech — logic that is explainable, verifiable, transparent. Not a black box.<p>Instead of collecting noise, we extract meaning.
Each product gets a unique international code, e.g. 31-0015-5643-1002-002, which precisely describes:<p><pre><code> “Battery type AA, alkaline, 1.5 V, 1500 mAh”
</code></pre>
This allows:<p><pre><code> universal search across manufacturers
matching of real analogues
complete catalog standardization
clear link to real physical characteristics (voltage, composition, dimensions)
</code></pre>
Why Big Tech can’t (and won’t) do this<p>Because their incentives are the opposite.<p><pre><code> They monetize ambiguity — the more similar products you see, the more ads you click.
Their systems are built on AI approximations, not physical properties.
They rely on scale, not structure — and can’t easily reverse course.
</code></pre>
To build something like CTMinfo, you need:<p><pre><code> engineers who understand supply chains,
people who’ve worked with customs, logistics, and real catalogs,
and domain experts who verify each entry by hand.
</code></pre>
No amount of machine learning will replace that.
Is it scalable?<p>Yes — in a different way.<p>Our business model is simple:<p><pre><code> $1/month per verified product listing
100% accuracy, no duplicates, no fuzzy logic
Perfect for ERPs, customs, government procurement, science, and automation
</code></pre>
Start with one category. Build trust. Expand.<p>Example: Just the AA/AAA battery market is $20B/year globally. Our verified database could cover it with 7 specialists in 1 year. And save millions in search, procurement, and error reduction.
This is more than a catalog<p>This is a structural challenge to how information flows today.<p>CTMinfo is:<p><pre><code> beyond politics, beyond corporate influence
a system where lying is technically impossible
an open ontology of physical reality, built from real-world data
</code></pre>
We're not here to guess what users meant. We describe what is.<p>Contact:
Dmitriy Andriyanov
ctminfocom@proton.me
www.ctminfo.com
Telegram: @ctminfocom