我构建了 OmniAgent:MCP 与自定义业务逻辑之间缺失的桥梁

1作者: abiorh0014 天前原帖
模型上下文协议(MCP)生态系统正在迅速发展——包括Git服务器、数据库、API和文件系统。但存在一个空白:如何将MCP工具与您现有的业务逻辑结合起来? 我有MCPOmni Connect——一个强大的MCP客户端,具备隐藏的代理功能(ReAct和Orchestrator模式)。但开发者们总是面临同样的问题: - “我可以连接到MCP服务器,但如何添加我的Python函数?” - “代理可以读取文件和查询数据库,但它不知道我的业务规则。” - “我需要能够理解MCP工具和我的自定义逻辑的代理。” 架构差距 MCPOmni Connect拥有强大的代理功能,但在CLI命令中隐藏,缺少了连接的桥梁: MCP生态系统 ← 缺失的桥梁 → 您的业务逻辑 其他平台要么: - 提供自定义工具但没有MCP集成 - 提供MCP集成但没有自定义工具系统 - 同时提供两者但没有智能编排 OmniAgent解决方案:本地工具 + MCP + 智能记忆 我没有再构建一个新的AI平台,而是通过添加缺失的桥梁来完善已有的强大功能: 本地工具系统:将Python函数注册为AI工具 ```python @tool_registry.register_tool("calculate_shipping_cost") def calculate_shipping_cost(weight: float, zone: str) -> str: # 您的业务逻辑 return f"运费: ${cost}" ``` 现在,AI可以将您的业务逻辑与MCP工具结合使用。 智能编排:代理理解何时使用: - MCP工具(文件系统、数据库、API) - 您的自定义业务逻辑 - 两者的组合 多层记忆:代理记住: - 哪些工具组合适用于您的特定用例 - 您的业务上下文和偏好 - 之前对类似问题的解决方案 与众不同之处 1. MCP + 自定义工具集成 其他平台让您做出选择,而OmniAgent则将两者结合: - 完整的MCP生态系统访问(100多种服务器类型) - 注册您现有的Python函数 - 两者之间的智能编排 2. 业务逻辑理解 通用AI代理无法理解您的领域。通过本地工具: - 代理学习您的业务规则 - 记住您的特定工作流程 - 将外部数据(MCP)与内部逻辑(您的工具)结合 3. 为两者构建的生产基础设施 - 事件流监控MCP和自定义工具的使用 - 向量记忆,记住成功的MCP + 自定义工具组合 - 可以自主使用您业务逻辑的后台代理 演变路径 MCPOmni Connect(之前): - 强大的MCP客户端,具备隐藏的代理功能 - CLI中的ReAct和Orchestrator模式 - 无法添加自定义业务逻辑 OmniAgent(之后): - 相同的MCP基础 + 本地工具桥梁 - 为两种工具类型提供智能记忆 - 完整的可编程平台 真实用例:电子商务代理 ```python # 您的业务逻辑 @tool_registry.register_tool("check_inventory") def check_inventory(product_id: str) -> str: return inventory_status @tool_registry.register_tool("calculate_discount") def calculate_discount(customer_tier: str, amount: float) -> str: return discount_amount # 代理结合: # - MCP文件系统工具(读取订单文件) # - MCP数据库工具(客户数据) # - 您的业务逻辑(库存、定价规则) ``` 技术基础 - 工具集成:MCP生态系统与本地Python函数之间的无缝桥梁 - 记忆系统:向量数据库记住成功的工具组合 - 事件流:监控MCP和自定义工具的使用 - 执行引擎:基于XML的编排用于复杂工具链 真正的创新 不是另一个AI代理平台,而是一个桥梁,让您结合: - 不断增长的MCP生态系统 - 您现有的业务逻辑 - 学习您模式的智能记忆 GitHub: https://github.com/Abiorh001/mcp_omni_connect
查看原文
The Model Context Protocol (MCP) ecosystem is exploding - servers for Git, databases, APIs, filesystems. But there was a gap: How do you combine MCP tools with your existing business logic?<p>I had MCPOmni Connect - a powerful MCP client with hidden agent capabilities (ReAct &amp; Orchestrator modes). But developers kept hitting the same wall:<p>- &quot;I can connect to MCP servers, but how do I add MY Python functions?&quot; - &quot;The agent can read files and query databases, but it doesn&#x27;t know my business rules&quot; - &quot;I need agents that understand both MCP tools AND my custom logic&quot;<p>The Architecture Gap<p>MCPOmni Connect had powerful agent capabilities buried in CLI commands, but was missing the bridge between:<p>MCP Ecosystem ←Missing Bridge → Your Business Logic<p>Other platforms either: - Give you custom tools but no MCP integration - Give you MCP integration but no custom tool system - Give you both but no intelligent orchestration between them<p>The OmniAgent Solution: Local Tools + MCP + Intelligent Memory<p>Instead of building another AI platform, I completed what was already powerful by adding the missing bridge:<p>LOCAL TOOLS SYSTEM: Register Python functions as AI tools ```python @tool_registry.register_tool(&quot;calculate_shipping_cost&quot;) def calculate_shipping_cost(weight: float, zone: str) -&gt; str: # Your business logic here return f&quot;Shipping cost: ${cost}&quot;<p>Now AI can use YOUR business logic alongside MCP tools ```<p>INTELLIGENT ORCHESTRATION: Agents understand when to use: - MCP tools (filesystem, databases, APIs) - Your custom business logic - Combinations of both<p>MULTI-TIER MEMORY: Agents remember: - Which tool combinations work for your specific use cases - Your business context and preferences - Previous solutions to similar problems<p>What Makes This Different<p>1. MCP + Custom Tools Integration Other platforms make you choose. OmniAgent bridges both: - Full MCP ecosystem access (100+ server types) - Register your existing Python functions - Intelligent orchestration between both<p>2. Business Logic Understanding Generic AI agents don&#x27;t understand your domain. With local tools: - Agents learn your business rules - Remember your specific workflows - Combine external data (MCP) with internal logic (your tools)<p>3. Production Infrastructure Built for Both - Event streaming for monitoring both MCP and custom tool usage - Vector memory that remembers successful MCP + custom tool combinations - Background agents that can autonomously use your business logic<p>The Evolution Path<p>MCPOmni Connect (Before): - Powerful MCP client with hidden agent capabilities - ReAct &amp; Orchestrator modes in CLI - No way to add custom business logic<p>OmniAgent (After): - Same MCP foundation + local tools bridge - Intelligent memory for both tool types - Complete programmable platform<p>Real Use Case: E-commerce Agent<p>```python # Your business logic @tool_registry.register_tool(&quot;check_inventory&quot;) def check_inventory(product_id: str) -&gt; str: return inventory_status<p>@tool_registry.register_tool(&quot;calculate_discount&quot;) def calculate_discount(customer_tier: str, amount: float) -&gt; str: return discount_amount<p># Agent combines: # - MCP filesystem tools (read order files) # - MCP database tools (customer data) # - YOUR business logic (inventory, pricing rules) ```<p>Technical Foundation<p>- Tool Integration: Seamless bridge between MCP ecosystem and local Python functions - Memory System: Vector databases remember successful tool combinations - Event Streaming: Monitor both MCP and custom tool usage - Execution Engine: XML-based orchestration for complex tool chains<p>The Real Innovation<p>Not another AI agent platform. A bridge that lets you combine: - The growing MCP ecosystem - Your existing business logic - Intelligent memory that learns your patterns<p>GitHub: https:&#x2F;&#x2F;github.com&#x2F;Abiorh001&#x2F;mcp_omni_connect