问HN:你们在运行本地的LLM吗?你们的主要应用场景是什么?

4作者: briansun大约 1 个月前原帖
2025年似乎是本地模型的突破之年。开放权重的发布变得真正有用:从谷歌的Gemma到最近的*gpt-oss*发布,在许多日常任务中,与前沿商业模型的差距不断缩小。 然而,在这个社区之外,本地大型语言模型(LLM)似乎仍未成为主流。我的直觉是:*优秀的用户体验和持久的应用程序仍然稀缺。* 如果你正在使用本地模型,我很想了解你的设置和工作流程。请具体说明,以便其他人可以进行调整: - 模型及大小:确切的名称/版本,以及量化(例如,Q4_K_M)。 - 运行时/工具:例如,Ollama、LM Studio等。 - 硬件:CPU/GPU的详细信息(显存/内存),操作系统。如果是笔记本电脑/边缘设备/家庭服务器,请提及。 - 本地模型胜出的工作流程:隐私/离线、数据安全、编码、大量数据提取、对文件的RAG、代理/工具、屏幕捕捉处理——哪些对你来说真正有效? - 痛点:在复杂推理、上下文管理、工具可靠性、长文连贯性、能耗/热量、内存、Windows/Mac/Linux的特殊问题上的质量。 - 今天最喜欢的应用:你每天实际使用的应用(以及原因)。 - 心愿单:你希望存在的应用。 注意事项/提示:配置标志、量化选择、提示模式或评估片段,这些对你产生了实质性影响。 如果你还没有使用本地模型,阻碍因素是什么——设置摩擦、质量、缺失的集成、电池/热量,还是仅仅觉得“云端更简单”?欢迎提供链接,但最有帮助的是来自实际使用的具体数字和轶事。 一个简单的回复模板(可选): ``` 模型: 运行时/工具: 硬件: 有效的用例: 痛点: 最喜欢的应用: 心愿单: ``` 我也很想知道人们在实践中如何看待隐私和安全。谢谢!
查看原文
2025 feels like a breakout year for local models. Open‑weight releases are getting genuinely useful: from Google’s Gemma to recent *gpt‑oss* drops, the gap with frontier commercial models keeps narrowing for many day‑to‑day tasks.<p>Yet outside of this community, local LLMs still don’t seem mainstream. My hunch: *great UX and durable apps are still thin on the ground.*<p>If you are using local models, I’d love to learn from your setup and workflows. Please be specific so others can calibrate:<p>Model(s) &amp; size: exact name&#x2F;version, and quantization (e.g., Q4_K_M).<p>Runtime&#x2F;tooling: e.g., Ollama, LM studio, etc.<p>Hardware: CPU&#x2F;GPU details (VRAM&#x2F;RAM), OS. If laptop&#x2F;edge&#x2F;home servers, mention that.<p>Workflows where local wins: privacy&#x2F;offline, data security, coding, huge amount extraction, RAG over your files, agents&#x2F;tools, screen capture processing—what’s actually sticking for you?<p>Pain points: quality on complex reasoning, context management, tool reliability, long‑form coherence, energy&#x2F;thermals, memory, Windows&#x2F;Mac&#x2F;Linux quirks.<p>Favorite app today: the one you actually open daily (and why).<p>Wishlist: the app you wish existed.<p>Gotchas&#x2F;tips: config flags, quant choices, prompt patterns, or evaluation snippets that made a real difference.<p>If you’re not using local models yet, what’s the blocker—setup friction, quality, missing integrations, battery&#x2F;thermals, or just “cloud is easier”? Links are welcome, but what helps most is concrete numbers and anecdotes from real use.<p>A simple reply template (optional):<p>``` Model(s): Runtime&#x2F;tooling: Hardware: Use cases that stick: Pain points: Favorite app: Wishlist: ```<p>Also curious how people think about privacy and security in practice. Thanks!