将ChatGPT的“保存记忆”转变为一个持久的、自我更新的运行时工具

1作者: Alchemical-Gold4 天前原帖
大多数人认为ChatGPT的保存记忆功能只是一个被动的笔记记录工具——一个模型可以在会话之间“记住”的静态知识库。 我一直在尝试将其重新构建为更像一个主动的运行环境——在这个环境中,记忆条目本身包含程序规则,模型会在每次交互中自动遵循这些规则,而无需我重新提示。 例如,我已经配置它运行一个实时的、持久的令牌计数器,该计数器在每次回复后更新,跟踪累计总数,计算成本和能量使用,并始终以锁定格式显示。它从一个固定的基线开始,在每次交互中扣除使用量,并在整个聊天会话中持续存在而不打断序列。 这有效地将记忆从一个静态数据库转变为一个状态化的计算层,存在于对话引擎内部——没有API接口,没有扩展,没有服务器,没有脚本。所有的操作都是通过内部的记忆指令和精心设计的提示完成的。 这开启了许多可能性: • 每次交互更新的内部分析仪表板。 • 不需要手动重述的多步骤持久工作流程。 • 在交互中存活并适应的嵌入式“代理”。 这是一个小但根本的转变——让ChatGPT的记忆不仅仅是记住某些东西,而是能够执行某些操作。 还有其他人尝试过这个想法吗?我对将记忆作为模型内自动化层的更广泛影响感到好奇。
查看原文
Most people think of ChatGPT’s Saved Memory as a passive note-taking feature — a static knowledge store the model can “remember” between sessions. I’ve been experimenting with re-tooling this into something more like an active runtime environment — where the memory entry itself contains procedural rules that the model follows automatically, every single exchange, without me re-prompting. For example, I’ve configured it to run a live, persistent token counter that updates after every reply, tracks cumulative totals, calculates cost and energy usage, and always displays in a locked format. It starts at a fixed baseline, deducts usage on each turn, and persists across the entire chat session without breaking the sequence. This effectively transforms memory from a static data vault into a stateful computation layer that lives inside the conversation engine — no API hooks, no extensions, no servers, no scripts. It’s all done internally, purely through memory instructions and careful prompt engineering. This opens up a lot of possibilities: • Internal analytics dashboards that update every turn. • Multi-step, persistent workflows that don’t require manual restating. • Embedded “agents” that survive and adapt across exchanges. It’s a small but fundamental shift — making ChatGPT’s memory do something, not just remember something. Has anyone else played with this idea? I’d be curious about the broader implications for using memory as an in-model automation layer.