展示HN:Neuron – 认知多智能体推理架构

2作者: machinemusic5 个月前原帖
目前大多数编排框架仍然像脆弱的链条一样运作——在面对矛盾、长期记忆或动态路由时会崩溃。 Neuron 是一种认知多智能体架构,它以电路而非链条的方式进行思考。多个智能体并行协作,实时调整其路径,并在长时间的交互中保持持久的上下文。 关键组件: - 智能体:输入、推理、响应、记忆 - 电路:动态路由而非线性链条 - 记忆:情节性 + 上下文持久性 - 监控:完整的推理追踪以便观察 为什么这很重要: - 处理矛盾输入而不崩溃 - 在长时间会话中保持状态 - 为复杂推理任务提供并行协调 - 透明的日志以便调试和建立信任 GitHub 仓库: [https://github.com/ShaliniAnandaPhD/Neuron](https://github.com/ShaliniAnandaPhD/Neuron) 评估笔记本: [https://www.notion.so/shalini-ananda-phd/Neuron-Evaluation-Notebook-1cec18ea2aa18002b7acf9c1791ca8ea](https://www.notion.so/shalini-ananda-phd/Neuron-Evaluation-Notebook-1cec18ea2aa18002b7acf9c1791ca8ea) 教程系列: [https://www.notion.so/shalini-ananda-phd/Neuron-Framework-Tutorial-Series-Cognitive-Architecture-for-Modular-AI-1fec18ea2aa180b5b1dff554f651bb01](https://www.notion.so/shalini-ananda-phd/Neuron-Framework-Tutorial-Series-Cognitive-Architecture-for-Modular-AI-1fec18ea2aa180b5b1dff554f651bb01) 关于我/背景: [https://www.notion.so/shalini-ananda-phd/Shalini-Ananda-PhD-ad2d228146624c9ea6f5db919bfe5433](https://www.notion.so/shalini-ananda-phd/Shalini-Ananda-PhD-ad2d228146624c9ea6f5db919bfe5433) 希望能收到 HN 社区的反馈——特别是如果您在使用传统工具时遇到过相同的崩溃点。
查看原文
Most orchestration frameworks today still behave like fragile chains — they break when faced with contradictions, long-term memory, or dynamic routing.<p>Neuron is a cognitive multi-agent architecture that thinks in circuits instead of chains. Multiple agents collaborate in parallel, adapt their pathways in real time, and keep persistent context across extended interactions.<p>Key components<p>Agents: Intake, Reasoning, Response, Memory<p>Circuits: Dynamic routing instead of linear chaining<p>Memory: Episodic + contextual persistence<p>Monitoring: Full reasoning traces for observability<p>Why it matters<p>Handles contradictory inputs without collapsing<p>Maintains state across extended sessions<p>Parallel coordination for complex reasoning tasks<p>Transparent logs for debugging &amp; trust<p>GitHub repo: <a href="https:&#x2F;&#x2F;github.com&#x2F;ShaliniAnandaPhD&#x2F;Neuron" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;ShaliniAnandaPhD&#x2F;Neuron</a><p>Evaluation Notebook: <a href="https:&#x2F;&#x2F;www.notion.so&#x2F;shalini-ananda-phd&#x2F;Neuron-Evaluation-Notebook-1cec18ea2aa18002b7acf9c1791ca8ea" rel="nofollow">https:&#x2F;&#x2F;www.notion.so&#x2F;shalini-ananda-phd&#x2F;Neuron-Evaluation-N...</a><p>Tutorial Series: <a href="https:&#x2F;&#x2F;www.notion.so&#x2F;shalini-ananda-phd&#x2F;Neuron-Framework-Tutorial-Series-Cognitive-Architecture-for-Modular-AI-1fec18ea2aa180b5b1dff554f651bb01" rel="nofollow">https:&#x2F;&#x2F;www.notion.so&#x2F;shalini-ananda-phd&#x2F;Neuron-Framework-Tu...</a><p>About me &#x2F; context: <a href="https:&#x2F;&#x2F;www.notion.so&#x2F;shalini-ananda-phd&#x2F;Shalini-Ananda-PhD-ad2d228146624c9ea6f5db919bfe5433" rel="nofollow">https:&#x2F;&#x2F;www.notion.so&#x2F;shalini-ananda-phd&#x2F;Shalini-Ananda-PhD-...</a><p>Would love feedback from the HN community — especially if you’ve run into the same breakdown points with traditional tools.