展示HN:Llmswap – 通过按项目的人工智能记忆解决“多个第二大脑”问题

2作者: sreenathmenon大约 1 个月前原帖
我发现许多开发者(包括我自己)都在面临同样的问题:“我需要多个大脑来处理生活中的不同方面,但人工智能在会话之间总是忘记上下文。”<p>因此,我构建了 llmswap v5.1.0,采用了一个工作区系统,为每个项目提供持久的人工智能记忆。<p>它是如何工作的:<p><pre><code> - cd ~/work/api-platform → AI 加载企业模式和团队约定 - cd ~/learning/rust → AI 加载你的学习历程,以及你遇到的困难 - cd ~/personal/side-project → AI 加载个人偏好和实验 </code></pre> 每个工作区都有独立的记忆(context.md、learnings.md、decisions.md),在会话之间保持持久。你的人工智能导师实际上会记住你昨天、上周、上个月学到的内容。<p>主要功能:<p><pre><code> • 自动学习日志(AI 从每次对话中提取关键学习内容) • 6种教学角色(在Guru、Socrates、Coach之间切换,以获得不同的视角) • 兼容任何提供商(Claude Sonnet 4.5、IBM Watsonx、GPT-4 o1、Gemini、Groq、Ollama) • Python SDK + CLI 一体化工具 • 无供应商锁定 </code></pre> 可以把它看作是“LLMs的cURL”——通用、简单、强大。<p>工作区系统是其与众不同之处。没有竞争对手(Claude Code、Cursor、Continue.dev)具备每个项目的持久记忆和自动学习跟踪功能。<p>专为以下开发者而建:<p><pre><code> - 管理多个项目并在上下文切换中迷失 - 厌倦了每次会话都要重新解释他们的技术栈 - 希望人工智能能在之前的学习基础上继续,而不是从零开始 - 需要不同的“模式”来处理工作/学习/副项目 </code></pre> 欢迎反馈!特别感兴趣的是:<p><pre><code> 1. 还有哪些工作区功能会有用? 2. 你目前如何管理跨项目的人工智能上下文? 3. 你会使用自动学习日志吗? </code></pre> GitHub: https://github.com/sreenathmmenon/llmswap<p>PyPI: pip install llmswap==5.1.0<p>文档: https://llmswap.org
查看原文
I kept seeing developers (including myself) struggle with the same problem: &quot;I need multiple second brains for different aspects of my life, but AI keeps forgetting context between sessions.&quot;<p>So I built llmswap v5.1.0 with a workspace system that gives you persistent, per-project AI memory.<p>How it works:<p><pre><code> - cd ~&#x2F;work&#x2F;api-platform → AI loads enterprise patterns, team conventions - cd ~&#x2F;learning&#x2F;rust → AI loads your learning journey, where you struggled - cd ~&#x2F;personal&#x2F;side-project → AI loads personal preferences, experiments </code></pre> Each workspace has independent memory (context.md, learnings.md, decisions.md) that persists across sessions. Your AI mentor actually remembers what you learned yesterday, last week, last month.<p>Key features:<p><pre><code> • Auto-learning journals (AI extracts key learnings from every conversation) • 6 teaching personas (rotate between Guru, Socrates, Coach for different perspectives) • Works with ANY provider (Claude Sonnet 4.5, IBM Watsonx, GPT-4 o1, Gemini, Groq, Ollama) • Python SDK + CLI in one tool • Zero vendor lock-in </code></pre> Think of it as &quot;cURL for LLMs&quot; - universal, simple, powerful.<p>The workspace system is what makes this different. No competitor (Claude Code, Cursor, Continue.dev) has per-project persistent memory with auto-learning tracking.<p>Built for developers who:<p><pre><code> - Manage multiple projects and lose context switching - Are tired of re-explaining their tech stack every session - Want AI that builds on previous learnings, not starts from zero - Need different &quot;modes&quot; for work&#x2F;learning&#x2F;side projects </code></pre> Open to feedback! Especially interested in:<p><pre><code> 1. What other workspace features would be useful? 2. How do you currently manage AI context across projects? 3. Would you use auto-learning journals? </code></pre> GitHub: https:&#x2F;&#x2F;github.com&#x2F;sreenathmmenon&#x2F;llmswap<p>PyPI: pip install llmswap==5.1.0<p>Docs: https:&#x2F;&#x2F;llmswap.org