展示HN:Aidlab – 开发者的健康数据

6作者: guzik大约 1 个月前原帖
大家好!我是Jakub,和我的联合创始人Agnieszka和Nathan一起,我们创建了Aidlab,这是一款可穿戴设备,能够为开发者提供黄金标准的生理数据。与那些API受限的健康追踪器不同,Aidlab提供了一个免费的SDK,支持6个以上的平台,因此你只需使用<i>pip install aidlabsdk</i>或<i>flutter pub add aidlab_sdk</i>,甚至在Unity等平台上,也可以开始实时流式传输原始健康数据和事件,使用简单的<i>didReceive*(timestamp, value)</i>回调。目前,我们通过API提供了13种数据类型,包括原始心电图(ECG)、咳嗽/打鼾、运动、原始呼吸、皮肤温度、体重重复、身体位置,以及20个高层统计数据,如压力或准备状态。 我收到的最常见问题是: 1) “它比我的智能手表好在哪里?” 2) “我们为什么要开发它?” 胸部佩戴的设备被认为是生理测量的黄金标准。例如,每当苹果验证他们的手表时,他们都会以胸带为基准,因为某些信号只能在靠近心脏的地方可靠测量(或根本无法测量),包括连续心电图、真实呼吸(基于肺容积变化)或身体位置/方向。 至于第二个问题:对我们来说,智能手表太简单,数据也不够准确,而先进的医疗设备则价格昂贵或过于复杂。我们找到了准确性和可及性之间的最佳平衡——Aidlab提供医疗级信号,而不需要医院级的复杂性。由于“医疗级”是一个大胆的声明,我们已经发布了验证论文,将Aidlab的性能与其他认证医疗设备进行了比较。 如今,Aidlab已经是一个相当成熟的概念。我们已经花了两年时间来构建Aidlab,在2020年发布了我们的第一个版本,获得了我们的第一批客户,包括来自Kernel/Blueprint(长寿研究)的Bryan Johnson和波音/杰普森(在测试和训练中监测飞行员生物信号)。 现在我们即将发布Aidlab 2,新增了EDA和GPS等信号,以及一系列新功能,包括设备上的机器学习(我们训练了一些小型LSTM模型,使用TensorFlow Lite for Micro进行推理)。令人兴奋的是,我们在FreeRTOS之上构建了一个自定义的shell,允许任何人在设备上直接调用类似POSIX的命令,例如: <i>timeout 10 temperature --sampling-rate 1 | tee /data/temperature.csv | tail -n 5</i> 对我们来说,最大的突破是意识到基于云的处理是错误的方法。起初,我们将大部分计算推送到云端——这看起来很自然,但结果却是缓慢、昂贵,开发者也不想要这种方式(“嘿,有没有办法在没有云的情况下使用你的产品?”)。例如,我们的心电图分析管道曾经将原始数据发送到外部微服务,通过Bull队列以30分钟为单位进行处理。24小时的Holter分析可能会生成超过10万个事件对象,并需要相当长的时间才能完成。现在,我们正在尽一切可能将计算移至边缘。在理想的情况下,云端不应存储或处理任何内容——只需直接接收来自设备的已分析、保护隐私的结果。 另一个教训是:不要在凌晨3点手动焊接原型以节省成本——请支付专业人士来组装电路板。 我们决定现在展示这个项目有三个原因: - 健康问题在长寿研究和生物黑客的兴起下显得尤为重要, - 我们接近完成Aidlab 2的最终版本, - 我非常好奇这里是否有人会觉得它有用! 如果你想亲自检查Aidlab的质量,我们每周都会发布不同活动的免费数据集。 [1] <a href="https://github.com/Aidlab" rel="nofollow">https://github.com/Aidlab</a> [2] <a href="https://www.apple.com/health/pdf/Heart_Rate_Calorimetry_Activity_on_Apple_Watch_November_2024.pdf" rel="nofollow">https://www.apple.com/health/pdf/Heart_Rate_Calorimetry_Activity_on_Apple_Watch_November_2024.pdf</a> [3] <a href="https://aidlab.com/validation" rel="nofollow">https://aidlab.com/validation</a> [4] <a href="https://aidlab.com/aidlab-2" rel="nofollow">https://aidlab.com/aidlab-2</a> [5] <a href="https://aidlab.com/datasets" rel="nofollow">https://aidlab.com/datasets</a>
查看原文
Hey HN! I&#x27;m Jakub, and together with my co-founders Agnieszka and Nathan, we built Aidlab, a wearable that gives developers gold-standard physiological data. Unlike health trackers with locked-down APIs, Aidlab ships with a free SDK [1] across 6+ platforms so you can just <i>pip install aidlabsdk</i> or <i>flutter pub add aidlab_sdk</i> or whatever platform (even Unity), and start streaming raw health data and events in real time with simple <i>didReceive*(timestamp, value)</i> callbacks. Currently, we are exposing 13 data types including raw ECG, cough&#x2F;snoring, motion, raw respiration, skin temperature, bodyweight reps, body position, and 20 high-level stats like stress or readiness through the API.<p>The most common questions I got are:<p>1) &quot;how is it better than my smartwatch?&quot;<p>2) &quot;why we built it?&quot;<p>Chest-mounted wearables are considered the gold standard for physiological measurements. For example, whenever Apple validates their watch, they benchmark against chest straps [2], as some signals can only be reliably measured (or measured at all!) near the heart including continuous ECG, true respiration (based on lung volume changes) or body position&#x2F;orientation.<p>As for the second question: the problem for us was that smartwatches were too simple and the data too inaccurate, while advanced medical devices were too pricey or too complicated. We found a sweet spot between accuracy and accessibility - Aidlab delivers medical-grade signals without the hospital-level complexity. As &quot;medical-grade&quot; is a bold statement, we’ve published validation papers comparing Aidlab’s performance with other certified medical devices [3].<p>Today Aidlab is already a pretty mature concept. We&#x27;ve been building Aidlab for 2 years, shipped our first version in 2020, we got our first clients, including Bryan Johnson from Kernel&#x2F;Blueprint (longevity research) or Boeing&#x2F;Jeppesen (monitoring pilots’ bio-signals during tests&amp;training).<p>Now we&#x27;re about to release Aidlab 2 [4] - with additional signals like EDA and GPS, and a bunch of new features, including on-device ML (we&#x27;ve trained a few small LSTM models running inference with TensorFlow Lite for Micro). The cool part is that we&#x27;ve built a custom shell on top of FreeRTOS, letting anyone invoke POSIX-like commands directly on the device, for example:<p><i>timeout 10 temperature --sampling-rate 1 | tee &#x2F;data&#x2F;temperature.csv | tail -n 5</i><p>The biggest breakthrough for us was realizing that cloud-based processing was the wrong approach. In the beginning, we pushed most of the computation to the cloud - it seemed natural, but turned out to be slow, costly, and devs didn&#x27;t want it (&quot;hey, is there a way to use your product without cloud?&quot;). For example, our ECG analysis pipeline used to send raw data to an external microservice, processing it in 30-minute chunks through Bull queues. A 24-hour Holter analysis could spawn 100k+ event objects and take significant time to complete. Now we&#x27;re doing everything we can to move computation to the edge. In an ideal world, the cloud wouldn&#x27;t store or process anything - just receive already-analyzed, privacy-preserving results straight from the device.<p>Another lesson: don&#x27;t hand-solder prototypes at 3 a.m. to save money -&gt; please pay professionals to assemble PCBs.<p>We decided to showcase this now for three reasons:<p>- health feels more relevant than ever with the rise of longevity research and biohacking,<p>- we are close to finalizing Aidlab 2,<p>- and I am super curious to see if anyone here finds it useful!<p>If you&#x27;d like to check the quality of Aidlab for yourself, we are publishing free datasets every week during different activities [5].<p>[1] <a href="https:&#x2F;&#x2F;github.com&#x2F;Aidlab" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;Aidlab</a><p>[2] <a href="https:&#x2F;&#x2F;www.apple.com&#x2F;health&#x2F;pdf&#x2F;Heart_Rate_Calorimetry_Activity_on_Apple_Watch_November_2024.pdf" rel="nofollow">https:&#x2F;&#x2F;www.apple.com&#x2F;health&#x2F;pdf&#x2F;Heart_Rate_Calorimetry_Acti...</a><p>[3] <a href="https:&#x2F;&#x2F;aidlab.com&#x2F;validation" rel="nofollow">https:&#x2F;&#x2F;aidlab.com&#x2F;validation</a><p>[4] <a href="https:&#x2F;&#x2F;aidlab.com&#x2F;aidlab-2" rel="nofollow">https:&#x2F;&#x2F;aidlab.com&#x2F;aidlab-2</a><p>[5] <a href="https:&#x2F;&#x2F;aidlab.com&#x2F;datasets" rel="nofollow">https:&#x2F;&#x2F;aidlab.com&#x2F;datasets</a>