展示HN:通过鼠标移动检测访客情绪(情感推断)

1作者: sentientiq大约 1 个月前原帖
我构建了一个系统,可以实时检测访客的情绪,完全不需要调查、追踪像素,也不涉及任何个人身份信息(PII)。 <p>问题: 你的分析工具告诉你发生了什么(用户流失),但并不知道原因(他们感到困惑、沮丧或价格过高)。 <p>工作原理: - JavaScript 捕捉鼠标移动、点击模式和滚动行为 - 情感推断引擎(Claude Sonnet)分析行为特征 - 系统检测:沮丧、困惑、犹豫、自信、退出意图 - 上下文感知的干预措施在毫秒内部署 - 反馈循环从结果中学习 <p>技术架构: - 20 个微服务在 EC2 上运行(情感推断、跨垂直机器学习、干预引擎) - 使用 NATS 进行实时消息流 - 使用 Supabase 进行数据持久化 - 经过速率限制和强化,适合生产环境 <p>与众不同之处: - 无需调查(实时行为推断) - 无个人身份信息(仅情感状态,无身份追踪) - 空间感知(干预措施与页面上下文匹配) - 自我改进(从转化结果中学习) <p>演示: 访问 <a href="https://sentientiq.ai" rel="nofollow">https://sentientiq.ai</a> - 你会感受到它在对你产生影响。互动演示展示了我们所检测到的内容。 <p>技术深度探讨: 打开浏览器控制台,访问 <a href="https://sentientiq.ai" rel="nofollow">https://sentientiq.ai</a> 并观察: <p>遥测流(鼠标移动、点击、模式) 情感检测(好奇心 → 不知所措 → 自信) 干预部署(上下文响应) 完整架构:20 个微服务、NATS 流、Claude 推断(Haiku→Sonnet 升级),速率限制为每分钟每会话 10 次 Sonnet 调用。详细文档即将发布。欢迎在此提出技术问题。 <p>这个项目我独自花了 6 个月时间完成,几乎经历了两次生死考验。非常希望听到 HN 社区的反馈。
查看原文
I built a system that detects visitor emotions in real-time from mouse telemetry - no surveys, no tracking pixels, zero PII.<p>The Problem: Your analytics tell you what happened (user bounced), but not why (they were confused, frustrated, or priced out).<p>How it works: - JavaScript captures mouse movements, click patterns, scroll behavior - Emotional inference engine (Claude Sonnet) analyzes behavioral signatures - System detects: frustration, confusion, hesitation, confidence, exit intent - Context-aware interventions deploy in milliseconds - Feedback loop learns from outcomes<p>The Stack: - 20 microservices on EC2 (emotional inference, cross-vertical ML, intervention engine) - NATS for real-time message streaming - Supabase for persistence - Rate-limited and hardened for production<p>What makes this different: - No surveys (real-time behavioral inference) - No PII (emotional states only, no identity tracking) - Spatial awareness (interventions match page context) - Self-improving (learns from conversion outcomes)<p>Demo: Visit <a href="https:&#x2F;&#x2F;sentientiq.ai" rel="nofollow">https:&#x2F;&#x2F;sentientiq.ai</a> - you&#x27;ll feel it working on you. The interactive demo shows what we detect.<p>Technical Deep Dive: Open the browser console on <a href="https:&#x2F;&#x2F;sentientiq.ai" rel="nofollow">https:&#x2F;&#x2F;sentientiq.ai</a> and watch:<p>Telemetry stream (mouse movements, clicks, patterns) Emotion detection (curiosity → overwhelm → confidence) Intervention deployment (contextual responses) Full architecture: 20 microservices, NATS streaming, Claude inference (Haiku→Sonnet escalation), rate-limited to 10 Sonnet calls&#x2F;min&#x2F;session. Detailed docs coming soon. Happy to answer technical questions here.<p>Built this solo over 6 months. Nearly died twice. Would love feedback from the HN crowd.