问HN:构建个人AI头像。哪些技术是必不可少的?

3作者: peefy大约 1 个月前原帖
技术问题:如何可靠地将非结构化的跨渠道数据(聊天记录、通话记录、电子邮件线程)结构化/统一为一个一致的“单一真实来源”,而不失去时间线或说话者意图等上下文信息?场景:能否避免遗漏关键细节(例如,通话中客户的口头预算限制与电子邮件中的书面功能请求)? 技术问题:在个性化(需要访问私人数据)与安全性(防止家庭聊天、工作合同泄露)之间,如何找到一个务实的平衡点?场景:端到端加密加上本地数据处理对于非企业用户来说是否可行,还是会影响可用性? 技术问题:如何使头像的“记忆”变得可操作(不仅仅是存档)——例如,将过去的互动与当前任务关联起来?场景:在我计划晚餐时,能否自动提取6个月前关于朋友过敏的聊天记录,而不是让我手动搜索?
查看原文
Technical: How to reliably structure&#x2F;unify unstructured cross-channel data (chat texts, call transcripts, email threads) into a consistent &quot;single source of truth&quot;—without losing context like timelines or speaker intent? Scenario: Can it avoid dropping critical details (e.g., a client’s verbal budget limit from a call vs. written feature requests in email)?<p>Technical: What’s a pragmatic way to balance personalization (needing access to private data) with security (preventing leaks of family chats, work contracts)? Scenario: Is end-to-end encryption + local data processing feasible for a non-enterprise user, or will it kill usability?<p>Technical: How to make the avatar’s &quot;memory&quot; actionable (not just a archive)—e.g., linking past interactions to current tasks? Scenario: Can it auto-pull a 6-month-old chat about a friend’s allergy when I’m planning a dinner, instead of me manually searching?