问HN:你们如何处理人工智能的维护?

1作者: satish1v大约 14 小时前原帖
正在进行我的第三个生产级人工智能部署。大家都在谈论“从用户反馈中学习的系统”,但在实际操作中,我看到的是: - 用户纠正错误 - 错误被记录 - 工程师每周审查日志 - 工程师手动更新模型/提示 重复以上过程。这只是在“手动更新中增加了额外步骤”,并不是真正的循环反馈。 问题是:有没有人真正构建出一个完全自动化的学习循环,使得纠正 → 自动改进,而无需工程师介入? 还是说“自我改进的人工智能”仍然主要是营销噱头? 欢迎进行20分钟的电话交流,比较不同的方法。私信我。
查看原文
Working on my 3rd production AI deployment. Everyone talks about &quot;systems that learn from user feedback&quot; but in practice I&#x27;m seeing:<p>Users correct errors<p>Errors get logged<p>Engineers review logs weekly<p>Engineers manually update model&#x2F;prompts -<p>Repeat This is just &quot;manual updates with extra steps,&quot; not a real flywheel.<p>Question: Has anyone actually built a fully automated learning loop where corrections → automatic improvements without engineering?<p>Or is &quot;self-improving AI&quot; still mostly marketing?<p>Open to 20-min calls to compare approaches. DM me.