机制设计理论

1作者: mertbirlik12 天前原帖
简要概述:我正在探索一种简单的、现实世界的电子商务定价机制,该机制将确定性的折扣路径与微小概率的“免费购买”选项相结合。每次购票都会略微提高所有人的公共折扣,因此该系统试图实现正和而非零和。我希望对该机制提出批评意见,并寻求关于证明(个体理性、预算平衡、无亏损)的反馈以及实施方面的建议。 ### 机制简介 这是一个应用机制,设定了(i)随时间/销售变化的折扣计划,以及(ii)买家以极小概率p获得免费商品(或全额退款)的机会。买家可以选择: 1. 以当前折扣价立即购买,或 2. 通过购买低价票尝试运气,获得商品的微小免费机会。 每次购票都会将商品的公共折扣降低一个档次(对价格的外部性),这即使对风险厌恶的买家也能提高转化率。 ### 重要性 - 将“促销/赠品”转变为可调节的、预算有限的机制。 - 鼓励网络效应:寻求风险的用户为风险中性/厌恶的用户提供折扣。 - 在合理的需求/弹性假设下,可能同时提高福利和收入。 ### 设计草图(希望获得反馈) - 约束条件:个体理性(买家应期望获得非负的剩余)、期望中的近似预算平衡,以及平台风险上限(p·价格 ≤ 利润范围)。 - 调节因素:p(t)、票价τ、折扣步长Δ、冷却时间/限制以防止滥用、反Sybil规则。 - 建模:使用蒙特卡洛方法进行校准;采用马尔可夫风格的保留模型进行重复互动;对p和Δ进行A/B测试。 ### 待解问题 - 这里是否有清晰的IC/IR/BB的证明/条件? - 福利与经典销售+优惠券的比较? - 各个司法管辖区的监管态度(促销 vs. 彩票 vs. 抽奖)? ### 状态与请求 我正在打包一个兼容Shopify的模块和一份简短的白皮书。我希望获得严谨的批评意见、类似机制的指引,或对机制设计和实际工程感兴趣的合作者。 ### 联系方式 Mert — beyazpiyon54@gmail.com
查看原文
TL;DR: I’m exploring a simple, real-world mechanism design for e-commerce pricing that mixes a deterministic discount path with a tiny-probability “free purchase” option. Each ticket purchase slightly increases the public discount for everyone, so the system tries to be positive-sum rather than zero-sum. Looking for critique on the mechanism, proofs (IC&#x2F;IR&#x2F;BB), and implementation feedback.<p>What it is An applied mechanism that sets (i) a discount schedule over time&#x2F;sales and (ii) a very small probability p that a buyer gets the item for free (or a full rebate). Buyers choose between: 1. Buy Now at the current discounted price, or 2. Try Your Luck by buying a low-cost ticket with a tiny chance to get the item free.<p>Every ticket purchase nudges the item’s public discount down a notch for everyone (externality on price), which increases conversion even for risk-averse buyers.<p>Why this might matter • Converts “promotion&#x2F;giveaway” into a tunable, budget-bounded mechanism. • Encourages network effects: risk-seeking users fund discounts enjoyed by risk-neutral&#x2F;averse users. • Potentially increases welfare and revenue simultaneously (under reasonable demand&#x2F;elasticity assumptions).<p>Design sketch (feedback wanted) • Constraints: Individual Rationality (buyers should expect non-negative surplus), approximate Budget Balance in expectation, and platform risk caps (p·price ≤ margin envelope). • Knobs: p(t), ticket price τ, discount step Δ, cooldowns&#x2F;limits to prevent abuse, anti-sybil rules. • Modeling: Monte Carlo for calibration; Markov-style retention for repeated interaction; A&#x2F;B on p and Δ.<p>Open questions • Clean proofs&#x2F;conditions for IC&#x2F;IR&#x2F;BB here? • Welfare vs. classic sales + coupons? • Regulatory posture across jurisdictions (promotion vs. lottery vs. sweepstakes)?<p>Status &amp; Ask I’m packaging a Shopify-compatible module and a short whitepaper. I’d love rigorous critique, pointers to similar mechanisms, or collaborators who enjoy mechanism design + practical engineering.<p>Contact: Mert — beyazpiyon54@gmail.com