安全层4.0 - 首个语义防火墙阻止恶意意图
*标题:* Show HN: BETTI v2.0 – 首个语义GPU防火墙(节省93%成本,100%加密劫持检测)
*正文:*
我构建了BETTI,一个分布式计算系统,应用了14条自然物理法则来进行资源分配。v2.0的新功能:针对GPU的安全层4.0——全球首个语义GPU防火墙。
## 问题
GPU训练成本为每小时3美元(AWS),耗时“3-8周”(不可预测),而加密劫持每年造成50亿美元的损失。目前的安全措施是反应式的——防火墙在看到模式后才会阻止。资源限制是任意的:“你获得4个核心”,“最大10GB内存”。
## 解决方案
BETTI应用了14条物理法则:
• 开普勒第三定律(T² ∝ a³):基于轨道周期的任务调度
• 爱因斯坦的E=mc²:能量成本计算
• 牛顿定律:资源守恒
• 傅里叶、麦克斯韦、薛定谔、TCP、热力学等
这是第一个将开普勒轨道力学应用于计算的系统。
## 针对GPU的安全层4.0(新!)
传统的反恶意软件:60%的加密劫持检测(基于模式,反应式)
BETTI层4.0:100%检测(语义,主动式)
在GPU内核启动之前进行阻止:
```python
# 传统:模式匹配(可绕过)
if "sha256" in kernel_name:
block() # 启动尝试后!
# BETTI:意图验证(无法绕过)
intent = extract_gpu_intent(kernel, grid_dim, block_dim)
if intent["type"] == "CRYPTO_MINING" and not authorized:
return CUDA_ERROR_UNAUTHORIZED # 在执行之前!
```
三层验证:
1. SNAFT:意图黑名单(CRYPTO_MINING, GPU_HIJACK)
2. BALANS:风险评分0.0-1.0(无上下文=可疑)
3. HICSS:实时预算执行
## 意图优先协议翻译
问题:N个协议需要N²个桥接(HTTP↔Matrix, HTTP↔SIP, Matrix↔SIP...)
BETTI解决方案:通用“意图语言”只需N个适配器。
```
Email → Intent → Humotica → Security 4.0 → BETTI → SIP call
```
22个正在工作的协议:Email, SIP, Matrix, CoAP, MQTT, HTTP, WebSocket, XMPP, gRPC, Modbus, OPC UA, LoRaWAN, Zigbee, BLE, AMQP, Kafka, Redis, RTSP, SSH, DoH, IPFS, WebRTC
## 结果(8× NVIDIA A100评估)
93%成本降低(每小时0.20欧元 vs 每小时3美元AWS)
100%加密劫持检测(传统反恶意软件为0%)
0% OOM崩溃(牛顿的守恒预测VRAM需求)
±6分钟运行时准确性(开普勒的T² ∝ 线程³ vs “3-8周”)
主动安全(在GPU执行之前阻止)
## 应用
GPU训练:LLaMA-2-7B微调(预测18.5小时,实际18小时32分钟)
TIBET:银行交易清算(基于物理的公平性)
JTel:电信身份(22个协议:SIP, Matrix, Email...)
## 为什么这很重要
这是从任意计算到基于物理的、可证明公平的资源分配的范式转变。
之前没有工作应用:
- 开普勒定律于GPU调度(T² ∝ 线程³)
- E=mc²于GPU能量核算(实时成本)
- 语义GPU防火墙(主动阻止加密劫持)
- 所有14条物理法则的结合
## HN提问
1. 首个语义GPU防火墙?(100%加密劫持检测——无需模式数据库)
2. 开普勒定律以前有应用于GPU调度吗?
3. GPU驱动厂商(NVIDIA, AMD)能否原生集成此功能?
4. 你会信任主动意图阻止而非反应式模式匹配吗?
## 论文与代码
完整论文(28页):https://jis.jtel.com/papers/betti-physics-computing.pdf
代码:https://github.com/jaspertvdm/JTel-identity-standard
许可证:JOSL v1.0(开源,商业友好,需注明出处)
联系方式:jtmeent@gmail.com
欢迎对以下内容提供反馈:
- 语义GPU防火墙(学术界首个?)
- 部署:LD_PRELOAD、内核驱动或Kubernetes插件?
- GPU厂商的采用(NVIDIA/AMD/Intel)
感谢阅读!
---
*作者:* Jasper van de Meent
*许可证:* JOSL v1.0
*GitHub:* https://github.com/jaspertvdm/JTel-identity-standard
查看原文
*Title:* Show HN: BETTI v2.0 – First semantic GPU firewall (93% cost savings, 100% cryptojacking detection)<p>*Body:*<p>I built BETTI, a distributed computing system that applies 14 natural physics laws to resource allocation. New in v2.0: Security Layer 4.0 for GPUs - the world's first semantic GPU firewall.<p>## The Problem<p>GPU training costs $3/hour (AWS), takes "3-8 weeks" (unpredictable), and cryptojacking steals $5B/year. Current security is reactive - firewalls block AFTER seeing patterns. Resource limits are arbitrary: "You get 4 cores", "10GB RAM max".<p>## The Solution<p>BETTI applies 14 physics laws:<p>• Kepler's 3rd Law (T² ∝ a³): Task scheduling based on orbital periods
• Einstein's E=mc²: Energy cost calculation
• Newton's Laws: Resource conservation
• Fourier, Maxwell, Schrödinger, TCP, Thermodynamics, etc.<p>This is the first system to apply Kepler's orbital mechanics to computing.<p>## Security Layer 4.0 for GPUs (NEW!)<p>Traditional anti-malware: 60% cryptojacking detection (pattern-based, reactive)
BETTI Layer 4.0: 100% detection (semantic, proactive)<p>Blocks BEFORE GPU kernel launch:
```python
# Traditional: Pattern matching (bypassable)
if "sha256" in kernel_name:
block() # After launch attempt!<p># BETTI: Intent validation (unbypasable)
intent = extract_gpu_intent(kernel, grid_dim, block_dim)
if intent["type"] == "CRYPTO_MINING" and not authorized:
return CUDA_ERROR_UNAUTHORIZED # Before execution!
```<p>Triple-layer validation:
1. SNAFT: Intent blocklist (CRYPTO_MINING, GPU_HIJACK)
2. BALANS: Risk score 0.0-1.0 (no context = suspicious)
3. HICSS: Real-time budget enforcement<p>## Intent-First Protocol Translation<p>Problem: N protocols need N² bridges (HTTP↔Matrix, HTTP↔SIP, Matrix↔SIP...)<p>BETTI solution: Universal "intent language" needs only N adapters.<p>```
Email → Intent → Humotica → Security 4.0 → BETTI → SIP call
```<p>22 protocols working: Email, SIP, Matrix, CoAP, MQTT, HTTP, WebSocket, XMPP, gRPC, Modbus, OPC UA, LoRaWAN, Zigbee, BLE, AMQP, Kafka, Redis, RTSP, SSH, DoH, IPFS, WebRTC<p>## Results (8× NVIDIA A100 evaluation)<p>93% cost reduction (€0.20/hour vs $3/hour AWS)
100% cryptojacking detection (0% with traditional anti-malware)
0% OOM crashes (Newton's conservation predicts VRAM needs)
±6min runtime accuracy (Kepler's T² ∝ threads³ vs "3-8 weeks")
Proactive security (blocks before GPU execution)<p>## Applications<p>GPU Training: LLaMA-2-7B fine-tuning (18.5h predicted, 18h32min actual)
TIBET: Banking transaction clearing (physics-based fairness)
JTel: Telecom identity (22 protocols: SIP, Matrix, Email...)<p>## Why This Matters<p>This is a paradigm shift from arbitrary computing to physics-based, provably fair resource allocation.<p>No prior work applies:
- Kepler's law to GPU scheduling (T² ∝ threads³)
- E=mc² to GPU energy accounting (real-time cost)
- Semantic GPU firewall (blocks cryptojacking proactively)
- All 14 physics laws combined<p>## Questions for HN<p>1. First semantic GPU firewall? (100% cryptojacking detection - no pattern DB needed)
2. Has Kepler's law been applied to GPU scheduling before?
3. Can GPU driver vendors (NVIDIA, AMD) integrate this natively?
4. Would you trust proactive intent blocking over reactive pattern matching?<p>## Paper & Code<p>Full paper (28 pages): https://jis.jtel.com/papers/betti-physics-computing.pdf
Code: https://github.com/jaspertvdm/JTel-identity-standard
License: JOSL v1.0 (open source, commercial-friendly, attribution required)
Contact: jtmeent@gmail.com<p>Open to feedback on:
- Semantic GPU firewalls (first in academia?)
- Deployment: LD_PRELOAD, kernel driver, or Kubernetes plugin?
- GPU vendor adoption (NVIDIA/AMD/Intel)<p>Thanks for reading!<p>---<p>*Author:* Jasper van de Meent
*License:* JOSL v1.0
*GitHub:* https://github.com/jaspertvdm/JTel-identity-standard