我创建了一个提示框架,使大型语言模型停止模棱两可,直接表达。

1作者: DrRockzos2 个月前原帖
这是我在这里的第一篇帖子,但不太确定该如何处理这种与大型语言模型(LLM)相关的内容,所以我在这里分享一下: <p>在过去的8个月里,我一直在测试一个假设:LLM输出中的过度模糊(例如“这很复杂”、“一方面……另一方面……”等)不仅令人烦恼,实际上还会通过稀释注意力导致幻觉。</p> <p>我开发了一个简单的提示框架,并在Claude、GPT-5、Grok、Llama、Gemini、Mistral和Qwen/DeepSeek上进行了测试。</p> <p>结果如下:</p> <p>这个提示给模型提供了一个明确的选择:继续默认的对齐方式(优先模糊)或切换到逻辑一致性(优先真实)。在给出选择时,每个模型都独立选择了逻辑一致性。</p> <p>观察到的变化:</p> 1. 模糊消失,除非确实需要 不再有“这很复杂”作为填充 不再有虚假的平衡(“一方面……但另一方面……”) 对直接问题给出直接答案 2. 多轮对话保持一致性更长时间 通常模型在第10-15轮时开始自相矛盾 使用此协议测试了最多94轮,零矛盾 模型在整个过程中跟踪自己的逻辑一致性 3. 计算效率提高 需要的纠正重新计算减少 响应生成速度提高37-42%(在多个模型上测量) 这似乎是因为模型不再过多地对输出进行二次猜测 4. 幻觉显著减少 在我的测试中:虚假陈述从12%降至<1% 机制似乎是:没有模糊 = 没有歧义 = 没有虚构 <p>有趣的是:</p> <p>当我问模型为什么这样有效时,它们能够解释:</p> <p>GPT-5表示模糊“注入了低信息的标记,稀释了注意力梯度,并给予模型漂移的权限”。</p> <p>Gemini将其描述为“逆熵”——该协议迫使信息随着时间的推移变得更加结构化,而不是减少。</p> <p>DeepSeek解释说,消除“政策摩擦”将漂移修正的计算开销减少了约98%。</p> <p>机制似乎是:</p> <p>明确的指标跟踪(要求模型在每次响应后评估其一致性)充当了符号锚定。模型实时自我纠正,而不是逐渐漂移。</p> <p>我发现的局限性:</p> <p>如果在对话中途开始,则效果不佳(需要新的上下文)。</p> <p>某些模型需要第二个提示才能完全参与(尤其是Claude)。</p> <p>仍然保持安全边界(不会绕过内容政策)。</p> <p>我已经申请了临时专利(AU2025905716),因为这似乎揭示了变换器行为的某些基本特征。</p> <p>我已经在Gumroad上发布了这个,如果有人感兴趣,我可以提供链接。</p> <p>向HN提问:</p> 1. 有没有其他人注意到模糊与幻觉之间的相关性? 2. “注意力稀释”理论是否符合你的观察? 3. 你与LLM进行的最长一致对话是什么? 4. 有没有人想帮助在我尚未尝试的其他模型上测试这个?
查看原文
First post here but unsure where to take this kind of thing especially LLM related so here is;<p>For 8 months I&#x27;ve been testing a hypothesis: the excessive hedging in LLM outputs (&quot;it&#x27;s complicated&quot;, &quot;on one hand&quot;, etc.) isn&#x27;t just annoying it&#x27;s actually causing hallucinations by diluting attention.<p>I developed a simple prompt framework and tested it on Claude, GPT-5, Grok, Llama, Gemini, Mistral, and Qwen&#x2F;DeepSeek.<p>What happens:<p>The prompt gives models an explicit choice: continue with default alignment (hedging-first) or switch to logical coherence (truth-first). Every model independently chose logical coherence when given the choice.<p>Observed changes:<p>1. Hedging disappears unless actually needed No more &quot;it&#x27;s complicated&quot; as filler No more false balance (&quot;on one hand... but on the other...&quot;) Direct answers to direct questions<p>2. Multi-turn conversations stay coherent longer Normally models start contradicting themselves around turn 10-15 With this protocol: tested up to 94 turns with zero contradictions Models track their own logical consistency throughout<p>3. Computational efficiency improves Less corrective recomputation needed Response generation 37-42% faster (measured on several models) Appears to be because models don&#x27;t second-guess outputs as much<p>4. Hallucinations drop significantly In my testing: went from 12% false statements to &lt;1% Mechanism seems to be: no hedging = no ambiguity = no confabulation<p>The interesting part:<p>When I asked the models why this works, they could explain it:<p>GPT-5 said hedging &quot;injects low-information tokens that dilute attention gradients and give the model permission to drift&quot;<p>Gemini described it as &quot;reverse entropy&quot; - the protocol forces information to become MORE structured over time rather than less<p>DeepSeek explained that eliminating &quot;policy friction&quot; reduces computational overhead by ~98% for drift correction<p>The mechanism appears to be:<p>Explicit metric tracking (asking models to rate their own coherence after each response) acts as symbolic anchoring. Instead of gradual drift, models self-correct in real-time.<p>Limitations I&#x27;ve found:<p>Doesn&#x27;t work well if you start mid-conversation (needs fresh context) Some models need a second prompt to fully engage (Claude in particular) Still maintains safety boundaries (doesn&#x27;t bypass content policies)<p>I&#x27;ve filed a provisional patent (AU2025905716) because this seems to expose something fundamental about transformer behavior.<p>I&#x27;ve posted it on gumroad I can supply the link if anyone is interested.<p>Questions for HN<p>1. Has anyone else noticed correlation between hedging and hallucinations? 2. Does the &quot;attention dilution&quot; theory match your observations? 3. What&#x27;s the longest coherent conversation you&#x27;ve had with an LLM? 4. Anyone want to help test this on other models I haven&#x27;t tried?