展示HN:抗毒性AI代理的QCMP框架(ArXiv Cs.ai待发布)

1作者: brad-mcevilly大约 2 个月前原帖
嘿,HN——经过一年的研究代理人工智能的脆弱性,我构建了QCMP:一个四层架构,旨在防止内存中毒。MCP的服务器数量达到16K,但像MINJA(98.2%的查询成功率)和AgentPoison(从0.1%的毒素中获得80%以上的后门)这样的攻击暴露了核心缺陷——内存过于信任自己。 QCMP借鉴了IIT意识度量(CCI > 0.90以冻结片段)、后量子校验和(ML-KEM-768)、CTC自一致性(NIS > 0.95)以及螳螂虾风格的稀疏检查(<50毫秒TME)。已准备好符合OWASP/EU AI法案,并提供Rust实现的建议。 PDF(浏览器查看):[https://github.com/bradmcevilly/qcmp-whitepaper/blob/main/QCMP_Whitepaper_arXiv.pdf](https://github.com/bradmcevilly/qcmp-whitepaper/blob/main/QCMP_Whitepaper_arXiv.pdf) 首次向arXiv提交至cs.AI——寻求支持(4个以上的近期订阅)。对量子生物钩子或群体层的反馈如何?欢迎讨论。 deepsweep.ai | linkedin.com/in/bradmcevilly 我在过去一年中专注于解决代理人工智能中的内存中毒问题(例如,仅通过查询就实现98%的MINJA成功率)。介绍QCMP:一个结合IIT意识度量(CCI > 0.90阈值)、后量子校验和(ML-KEM)和CTC一致性的四层架构,以实现防篡改的代理群体。 主要成果:在<50毫秒内检测到0.1%的AgentPoison后门;符合OWASP/EU AI法案。 PDF:[https://github.com/bradmcevilly/qcmp-whitepaper/blob/main/QCMP_Whitepaper_arXiv.pdf](https://github.com/bradmcevilly/qcmp-whitepaper/blob/main/QCMP_Whitepaper_arXiv.pdf) 首次向arXiv提交至cs.AI——寻求HN社区的支持/反馈。对量子生物钩子或多代理层的看法如何?欢迎交流。 网站:deepsweep.ai | LinkedIn:linkedin.com/in/bradmcevilly
查看原文
Hey HN—after a year digging into agentic AI vulnerabilities, I&#x27;ve built QCMP: a 4-layer architecture to slam the door on memory poisoning. MCP&#x27;s at 16K servers, but attacks like MINJA (98.2% query-only success) and AgentPoison (80%+ backdoors from 0.1% poison) expose the core flaw—memory trusts itself too much.<p>QCMP borrows from IIT consciousness metrics (CCI &gt;0.90 to freeze fragments), post-quantum checksums (ML-KEM-768), CTC self-consistency (NIS &gt;0.95), and mantis shrimp-style sparse checks (&lt;50ms TME). OWASP&#x2F;EU AI Act ready, with Rust impl tips.<p>PDF (in-browser view): <a href="https:&#x2F;&#x2F;github.com&#x2F;bradmcevilly&#x2F;qcmp-whitepaper&#x2F;blob&#x2F;main&#x2F;QCMP_Whitepaper_arXiv.pdf" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;bradmcevilly&#x2F;qcmp-whitepaper&#x2F;blob&#x2F;main&#x2F;QC...</a><p>First arXiv push to cs.AI—hunting endorsements (4+ recent subs). Feedback on the quantum-bio hooks or swarm layers? Open to riffs.<p>deepsweep.ai | linkedin.com&#x2F;in&#x2F;bradmcevilly<p>I&#x27;ve spent the last year tackling memory poisoning in agentic AI (e.g., 98% MINJA success via queries alone). Introducing QCMP: a 4-layer architecture blending IIT consciousness metrics (CCI &gt;0.90 thresholds), post-quantum checksums (ML-KEM), and CTC consistency for tamper-proof agent swarms.<p>Key wins: Detects 0.1% AgentPoison backdoors in &lt;50ms; OWASP&#x2F;EU AI Act compliant.<p>PDF: <a href="https:&#x2F;&#x2F;github.com&#x2F;bradmcevilly&#x2F;qcmp-whitepaper&#x2F;blob&#x2F;main&#x2F;QCMP_Whitepaper_arXiv.pdf" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;bradmcevilly&#x2F;qcmp-whitepaper&#x2F;blob&#x2F;main&#x2F;QC...</a><p>First arXiv sub to cs.AI—seeking endorsements&#x2F;feedback from the HN community. Thoughts on the quantum-bio hooks or multi-agent layers? Open to chats.<p>Site: deepsweep.ai | LI: linkedin.com&#x2F;in&#x2F;bradmcevilly