人工智能编程很吸引人,但会计才是真正的低垂果实自动化目标。
正在致力于自动化小型企业的财务管理(记账、对账、基本报告)。<p>我注意到的一件事是:与编程相比,会计往往看起来是更容易自动化的问题:<p>它是基于规则的
双重记账、科目表、税务规则、重要性阈值。对于大多数日常交易,你并不是在创造新的逻辑,而是在应用现有的规则。<p>它是可验证的
账本要么平衡,要么不平衡。分类账要么对账成功,要么不成功。几乎总有一个“真实依据”可以进行比较(银行数据、报表、前期数据)。<p>它是无聊且重复的
每个月都是相同的供应商、相同的类别、相同的模式。人类讨厌这项工作,而软件却喜欢。<p>在会计方面,至少在小型企业层面,大部分工作感觉像是:<p>从银行/信用卡/发票中规范化数据<p>应用确定性或可配置的规则<p>将例外情况呈现给人类审核<p>进行一致性检查和报告<p>真正困难的部分(税务策略、边缘案例、复杂历史、与当局沟通)占总工时的比例较小,但需要人类参与。繁琐的工作主要集中在重复的、基于规则的任务上。
查看原文
Working on automating small business finance (bookkeeping, reconciliation, basic reporting).<p>One thing I keep noticing: compared to programming, accounting often looks like the more automatable problem:<p>It’s rule-based
Double entry, charts of accounts, tax rules, materiality thresholds. For most day-to-day transactions you’re not inventing new logic, you’re applying existing rules.<p>It’s verifiable
The books either balance or they don’t. Ledgers either reconcile or they don’t. There’s almost always a “ground truth” to compare against (bank feeds, statements, prior periods).<p>It’s boring and repetitive
Same vendors, same categories, same patterns every month. Humans hate this work. Software loves it.<p>With accounting, at least at the small-business level, most of the work feels like:<p>normalize data from banks / cards / invoices<p>apply deterministic or configurable rules<p>surface exceptions for human review<p>run consistency checks and reports<p>The truly hard parts (tax strategy, edge cases, messy history, talking to authorities) are a smaller fraction of the total hours but require humans. The grind is in the repetitive, rule-based stuff.