展示HN:信息密度是否导致时间膨胀?
嗨,HN。标准广义相对论认为时间膨胀仅由质量-能量引起。但当信息熵达到临界密度时,会发生什么呢?
我发布了我的论文版本2.0,提出了信息诱导时间膨胀(ITD)假说。
假说:
我提出局部信息熵(\Delta S_{info})作为时空度量的“计算负载”。就像质量使时空弯曲一样,极端的信息密度可能会使局部时钟出现“滞后”。
实验(严格可证伪):
为了验证这一点,我设计了一种使用铷-87光学晶格钟的差分测量(第6节):
比较:一个处于GHZ纠缠态的系统(高信息)与一个处于乘积态的系统(低信息)。控制:质量和能量保持相同。预测:如果我的推导是正确的(\alpha \neq 0),那么纠缠部分将相对于对照组显示频率红移。
完整论文(Zenodo):
[https://zenodo.org/records/18027729](https://zenodo.org/records/18027729)
需要帮助:
我希望能得到对实验设置的反馈。
主要的工程挑战是保持GHZ相干性足够长的时间,以便将效果与环境噪声隔离开来。
如果您在量子计量学方面有专业知识,我将非常感激您的技术见解。
(可选)请求ArXiv支持:
支持代码:E3Y83D(physics.gen-ph)
查看原文
Hi HN. Standard General Relativity posits that time dilation is caused solely by mass-energy. But what happens when information entropy reaches a critical density?<p>I have released Version 2.0 of my paper, proposing the Information-Induced Time Dilation (ITD) hypothesis.<p>The Hypothesis:<p>I propose that local information entropy (\Delta S_{info}) acts as a "computational load" on the spacetime metric. Just as mass curves spacetime, extreme information density might "lag" the local clock.<p>The Experiment (Strictly Falsifiable):<p>To test this, I designed a differential measurement using Sr-87 optical lattice clocks (Section 6):<p>Compare: A system in a GHZ Entangled State (High Info) vs. a Product State (Low Info). Control: Mass and energy are kept identical. Prediction: If my derivation is correct (\alpha \neq 0), the entangled sector will show a frequency redshift relative to the control group.<p>Full Paper (Zenodo):<p><a href="https://zenodo.org/records/18027729" rel="nofollow">https://zenodo.org/records/18027729</a><p>Help Needed:<p>I am looking for feedback on the experimental setup.<p>The main engineering challenge is maintaining GHZ coherence long enough to isolate the effect from environmental noise.<p>If you have expertise in quantum metrology, I would deeply appreciate your technical insights.<p>(Optional) Request for ArXiv Endorsement:<p>Endorsement Code: E3Y83D (physics.gen-ph)