标准模型是过拟合还是我在进行曲线拟合?
我正在开发一个基于几何约束(w = 2,δ = √5)和拓扑不变量的物理相互作用几何模型。没有自由参数,只有几何。在您看来,这是否是一个合理的几何统一,还是仅仅是复杂的曲线拟合?
结果:
质子半径(r_p):
建模为四面体结构极限(4 · ƛ),并考虑球形场投影损失(α / 4 · π)。
```
r_p = 4 · ƛ_p · (1 - (α / (4 · π)))
预测值:8.407470 × 10^-16 m
实验值:8.4075(64) × 10^-16 m
差异:3 ppm
```
质子磁矩(g_p):
从动态势(δ = √5)推导,受到黄金摩擦项(α / Φ)的阻尼。
```
g_p = (δ^3 / w) - (α / Φ)
预测值:5.5856599
实验值:5.5856947
差异:6 ppm
```
缪子异常(a_μ):
作为二十面体几何的层次分解推导:表面(α / 2 · π)+ 节点(α^2 / 12)+ 顶点对称性(α^3 / 5)。
```
a_μ = (α / (2 · π)) + (α^2 / 12) + (α^3 / 5)
预测值:0.00116592506
实验值:0.00116592059
差异:4 ppm
```
α粒子半径(r_α):
建模为4核四面体(8 · ƛ),并考虑线性核子投影成本(α / π)。
```
r_α = 8 · ƛ_p · (1 - (α / π))
预测值:1.67856 × 10^-15 m
实验值:1.678 × 10^-15 m
差异:330 ppm
```
质子质量(m_p):
通过64位度量视界(2^64)和对角传输(√2)将普朗克尺度与质子尺度连接。
```
m_p = ((√2 · m_P) / 2^64) · (1 + α / 3)
预测值:1.67260849206 × 10^-27 kg
实验值:1.67262192595(52) × 10^-27 kg
差异:8 ppm
```
中子-质子质量差(∆_m):
建模为电子在几何压缩(20面体)到质子框架(立方体,8个顶点)中存储的势能。压缩比 = 20/8 = 5/2。
```
∆_m = m_e · ((5/2) + 4 · α + (α / 4))
预测值:1.293345 MeV
实验值:1.293332 MeV
差异:10 ppm
```
引力常数(G)无G:
从量子常数和质子质量推导,识别G为128位层次(2^128)的缩放伪影。
```
G = (ħ · c · 2 · (1 + α / 3)^2) / (m_p^2 · 2^128)
预测值:6.6742439706 × 10^-11
实验值:6.67430(15) × 10^-11 m^3 · kg^-1 · s^-2
差异:8 ppm
```
精细结构常数(α):
作为静态空间成本加上自旋子环修正推导。
```
α^-1 = (4 · π^3 + π^2 + π) - (α / 24)
预测值:137.0359996
实验值:137.0359991
差异:< 0.005 ppm
```
预印本: https://doi.org/10.5281/zenodo.17847770
查看原文
I am developing a geometric model of physical interactions based on geometric constraints (w = 2, δ = √5 ) and topological invariants. No free parameters, just geometry. In your opinion, is this a legitimate geometric unification or just sophisticated curve-fitting?<p>Results:<p>Proton radius (r_p):
Modeled as a tetrahedral structural limit (4 · ƛ) with spherical field projection loss (α / 4 · π).<p><pre><code> r_p = 4 · ƛ_p · (1 - (α / (4 · π)))
Pred: 8.407470 × 10^-16 m
Exp: 8.4075(64) × 10^-16 m
Diff: 3 ppm
</code></pre>
Proton magnetic moment (g_p):
Derived from the dynamic potential (δ = √5 ) damped by a golden friction term (α / Φ).<p><pre><code> g_p = (δ^3 / w) - (α / Φ)
Pred: 5.5856599
Exp: 5.5856947
Diff: 6 ppm
</code></pre>
Muon anomaly (a_μ):
Derived as a hierarchical resolution of the icosahedral geometry: surface (α / 2 · π) + nodes (α^2 / 12) + vertex symmetry (α^3 / 5).<p><pre><code> a_μ = (α / (2 · π)) + (α^2 / 12) + (α^3 / 5)
Pred: 0.00116592506
Exp: 0.00116592059
Diff: 4 ppm
</code></pre>
α particle radius (r_α):
Modeled as a 4-nucleon tetrahedron (8 · ƛ) with a linear nucleonic projection cost (α / π).<p><pre><code> r_α = 8 · ƛ_p · (1 - (α / π))
Pred: 1.67856 × 10^-15 m
Exp: 1.678 × 10^-15 m
Diff: 330 ppm
</code></pre>
Proton mass (m_p):
Connecting the Planck scale to proton scale via a 64-bit metric horizon (2^64) and diagonal transmission (√2 ).<p><pre><code> m_p = ((√2 · m_P) / 2^64) · (1 + α / 3)
Pred: 1.67260849206 × 10^-27 kg
Exp: 1.67262192595(52) × 10^-27 kg
Diff: 8 ppm
</code></pre>
Neutron-proton mass difference (∆_m):
Modeled as potential energy stored in the geometric compression of the electron (icosahedron, 20 faces) into the protonic frame (cube, 8 vertices). Compression ratio = 20/8 = 5/2.<p><pre><code> ∆_m = m_e · ((5/2) + 4 · α + (α / 4))
Pred: 1.293345 MeV
Exp: 1.293332 MeV.
Diff: 10 ppm.
</code></pre>
Gravitational constant (G) without G:
Derived from quantum constants and the proton mass, identifying G as a scaling artifact of the 128-bit hierarchy (2^128).<p><pre><code> G = (ħ · c · 2 · (1 + α / 3)^2) / (m_p^2 · 2^128)
Pred: 6.6742439706 × 10^-11
Exp: 6.67430(15) × 10^-11 m^3 · kg^-1 · s^-2
Diff: 8 ppm
</code></pre>
Fine-structure constant (α):
Derived as the static spatial cost plus a spinor loop correction.<p><pre><code> α^-1 = (4 · π^3 + π^2 + π) - (α / 24)
Pred: 137.0359996
Exp: 137.0359991
Diff: < 0.005 ppm
</code></pre>
Preprint: https://doi.org/10.5281/zenodo.17847770