标准模型是过拟合还是我在进行曲线拟合?

2作者: albert_roca大约 1 个月前原帖
我正在开发一个基于几何约束(w = 2,δ = √5)和拓扑不变量的物理相互作用几何模型。没有自由参数,只有几何。在您看来,这是否是一个合理的几何统一,还是仅仅是复杂的曲线拟合? 结果: 质子半径(r_p): 建模为四面体结构极限(4 · ƛ),并考虑球形场投影损失(α / 4 · π)。 ``` r_p = 4 · ƛ_p · (1 - (α / (4 · π))) 预测值:8.407470 × 10^-16 m 实验值:8.4075(64) × 10^-16 m 差异:3 ppm ``` 质子磁矩(g_p): 从动态势(δ = √5)推导,受到黄金摩擦项(α / Φ)的阻尼。 ``` g_p = (δ^3 / w) - (α / Φ) 预测值:5.5856599 实验值:5.5856947 差异:6 ppm ``` 缪子异常(a_μ): 作为二十面体几何的层次分解推导:表面(α / 2 · π)+ 节点(α^2 / 12)+ 顶点对称性(α^3 / 5)。 ``` a_μ = (α / (2 · π)) + (α^2 / 12) + (α^3 / 5) 预测值:0.00116592506 实验值:0.00116592059 差异:4 ppm ``` α粒子半径(r_α): 建模为4核四面体(8 · ƛ),并考虑线性核子投影成本(α / π)。 ``` r_α = 8 · ƛ_p · (1 - (α / π)) 预测值:1.67856 × 10^-15 m 实验值:1.678 × 10^-15 m 差异:330 ppm ``` 质子质量(m_p): 通过64位度量视界(2^64)和对角传输(√2)将普朗克尺度与质子尺度连接。 ``` m_p = ((√2 · m_P) / 2^64) · (1 + α / 3) 预测值:1.67260849206 × 10^-27 kg 实验值:1.67262192595(52) × 10^-27 kg 差异:8 ppm ``` 中子-质子质量差(∆_m): 建模为电子在几何压缩(20面体)到质子框架(立方体,8个顶点)中存储的势能。压缩比 = 20/8 = 5/2。 ``` ∆_m = m_e · ((5/2) + 4 · α + (α / 4)) 预测值:1.293345 MeV 实验值:1.293332 MeV 差异:10 ppm ``` 引力常数(G)无G: 从量子常数和质子质量推导,识别G为128位层次(2^128)的缩放伪影。 ``` G = (ħ · c · 2 · (1 + α / 3)^2) / (m_p^2 · 2^128) 预测值:6.6742439706 × 10^-11 实验值:6.67430(15) × 10^-11 m^3 · kg^-1 · s^-2 差异:8 ppm ``` 精细结构常数(α): 作为静态空间成本加上自旋子环修正推导。 ``` α^-1 = (4 · π^3 + π^2 + π) - (α / 24) 预测值:137.0359996 实验值:137.0359991 差异:< 0.005 ppm ``` 预印本: https://doi.org/10.5281/zenodo.17847770
查看原文
I am developing a geometric model of physical interactions based on geometric constraints (w = 2, δ = √5 ) and topological invariants. No free parameters, just geometry. In your opinion, is this a legitimate geometric unification or just sophisticated curve-fitting?<p>Results:<p>Proton radius (r_p): Modeled as a tetrahedral structural limit (4 · ƛ) with spherical field projection loss (α &#x2F; 4 · π).<p><pre><code> r_p = 4 · ƛ_p · (1 - (α &#x2F; (4 · π))) Pred: 8.407470 × 10^-16 m Exp: 8.4075(64) × 10^-16 m Diff: 3 ppm </code></pre> Proton magnetic moment (g_p): Derived from the dynamic potential (δ = √5 ) damped by a golden friction term (α &#x2F; Φ).<p><pre><code> g_p = (δ^3 &#x2F; w) - (α &#x2F; Φ) Pred: 5.5856599 Exp: 5.5856947 Diff: 6 ppm </code></pre> Muon anomaly (a_μ): Derived as a hierarchical resolution of the icosahedral geometry: surface (α &#x2F; 2 · π) + nodes (α^2 &#x2F; 12) + vertex symmetry (α^3 &#x2F; 5).<p><pre><code> a_μ = (α &#x2F; (2 · π)) + (α^2 &#x2F; 12) + (α^3 &#x2F; 5) Pred: 0.00116592506 Exp: 0.00116592059 Diff: 4 ppm </code></pre> α particle radius (r_α): Modeled as a 4-nucleon tetrahedron (8 · ƛ) with a linear nucleonic projection cost (α &#x2F; π).<p><pre><code> r_α = 8 · ƛ_p · (1 - (α &#x2F; π)) Pred: 1.67856 × 10^-15 m Exp: 1.678 × 10^-15 m Diff: 330 ppm </code></pre> Proton mass (m_p): Connecting the Planck scale to proton scale via a 64-bit metric horizon (2^64) and diagonal transmission (√2 ).<p><pre><code> m_p = ((√2 · m_P) &#x2F; 2^64) · (1 + α &#x2F; 3) Pred: 1.67260849206 × 10^-27 kg Exp: 1.67262192595(52) × 10^-27 kg Diff: 8 ppm </code></pre> Neutron-proton mass difference (∆_m): Modeled as potential energy stored in the geometric compression of the electron (icosahedron, 20 faces) into the protonic frame (cube, 8 vertices). Compression ratio = 20&#x2F;8 = 5&#x2F;2.<p><pre><code> ∆_m = m_e · ((5&#x2F;2) + 4 · α + (α &#x2F; 4)) Pred: 1.293345 MeV Exp: 1.293332 MeV. Diff: 10 ppm. </code></pre> Gravitational constant (G) without G: Derived from quantum constants and the proton mass, identifying G as a scaling artifact of the 128-bit hierarchy (2^128).<p><pre><code> G = (ħ · c · 2 · (1 + α &#x2F; 3)^2) &#x2F; (m_p^2 · 2^128) Pred: 6.6742439706 × 10^-11 Exp: 6.67430(15) × 10^-11 m^3 · kg^-1 · s^-2 Diff: 8 ppm </code></pre> Fine-structure constant (α): Derived as the static spatial cost plus a spinor loop correction.<p><pre><code> α^-1 = (4 · π^3 + π^2 + π) - (α &#x2F; 24) Pred: 137.0359996 Exp: 137.0359991 Diff: &lt; 0.005 ppm </code></pre> Preprint: https:&#x2F;&#x2F;doi.org&#x2F;10.5281&#x2F;zenodo.17847770