请问HN:如何在大型代码库中提升人工智能的编码/调试能力?
我主要使用Github Copilot(公司支付费用)。在调试大型代码库时,有哪些特别有效的技巧吗?到目前为止,我只有一个MD文件,里面包含了一些关于我们代码库的一般信息,然后我就让它搜索特定的函数或文件,从那里开始。对于更大的代码库,还有其他特别有效的想法吗?特别是考虑到这个领域似乎在快速变化。
查看原文
I mostly use Github Copilot(paid by the company). Are there any particular techniques that are helpful in debugging large codebases?
So far I just have a MD file, with some general details about our codebase, and then I just ask it to search for a particular function/file and start from there.
Are there other ideas that are particularly helpful for larger codebases, especially since this area seems to be changing rapidly?