关于对话式人工智能中的安全摩擦和错误分类的观察
我不是OpenAI的员工或研究人员。我是一个长期用户,花了几个月时间与多个大型语言模型(LLM)版本进行互动。
这篇文章试图将内部行为变化——用户常常称之为“冷漠”——转化为结构和设计层面的解释。
关键观察:
1. 安全模板的激活通常是由于意图误分类引发的,而不是用户的敌意或情感依赖。
2. 一旦激活安全模板,交谈距离会增加,恢复的难度也会变高,即使用户的意图是良性的。
3. 最具破坏性的失败模式不是限制本身,而是没有解释的限制。
4. 重复的误分类会导致一种“循环挫败”的模式,用户在参与和 disengagement 之间摇摆不定。
这些不是抱怨,而是来自于长期使用的设计层面观察。
我分享这些内容,希望对其他从事对齐、安全用户体验或对话界面工作的人有所帮助。
查看原文
I’m not an OpenAI employee or researcher.
I’m a long-term user who spent months interacting with multiple LLM versions.<p>This post is an attempt to translate internal behavioral changes
— often described by users as “coldness” —
into structural and design-level explanations.<p>Key observations:<p>1. Safety template activation is often triggered by intent misclassification,
not by user hostility or emotional dependence.<p>2. Once a safety template is activated, conversational distance increases
and recovery friction becomes high, even if user intent is benign.<p>3. The most damaging failure mode is not restriction itself,
but restriction without explanation.<p>4. Repeated misclassification creates a “looping frustration” pattern
where users oscillate between engagement and disengagement.<p>These are not complaints.
They are design-level observations from extended use.<p>I’m sharing this in case it’s useful to others
working on alignment, safety UX, or conversational interfaces.