请问HN:从离散几何中推导出7个常数达到<10ppm的概率是多少?

1作者: albert_roca大约 1 个月前原帖
问题<p>计算仅使用以下输入和离散几何键推导出7个基本物理常数的联合概率,精度达到<10ppm。<p>约束条件:不允许有连续可调参数(所有系数必须是整数或固定的几何根)。<p>1. 定义<p><pre><code> [A] 输入(CODATA 2022) alpha = 7.2973525643e-3 // 细结构常数 c = 299792458 // 光速 hbar = 1.054571817e-34 // 约化普朗克常数 mp = 1.67262192369e-27 // 质子质量 [B] 离散键(固定几何/拓扑) k_vol = 2 // 体积尺度(3D) k_dyn = sqrt(5) // 动态尺度(sqrt(2D-1)) k_bit = 64 // 二进制视界种子 k_tet = 4 // 四面体顶点 k_cub = 8 // 立方体顶点 k_ico = 12 // 二十面体顶点 k_fac = 20 // 二十面体面 k_spi = 24 // 旋量环因子 [C] 全局派生尺度(从输入和键计算一次) H_g = 2^(2*k_bit) // 引力视界(2^128) H_m = 2^k_bit // 度量视界(2^64) Lu = (hbar/(mp*c)) * H_m * sqrt(2) / (1 + alpha/3) // 基本晶格单位 </code></pre> 2. 推导<p><pre><code> [A] 引力常数(G) 公式:G = (hbar * c * k_vol * (1 + alpha/3)^2) / (mp^2 * H_g) > 结果:6.6742439e-11 > CODATA:6.67430(15)e-11 > 误差:8 ppm [B] 电子质量(me) // 由Lu定义的二十面体壳的全息逆 公式:me = (2 * alpha * hbar) / (c * (Lu * pi^2 * (1 + alpha - alpha/k_spi) * sin(72))) > 结果:9.1093836e-31 kg > CODATA:9.1093837e-31 kg > 误差:0.01 ppm [C] 细结构常数(alpha) - 几何检查 公式:1/x = (k_tet*pi^3 + pi^2 + pi) - (alpha/k_spi) > 结果:137.0359996 > CODATA:137.0359990 > 误差:0.005 ppm [D] 质子半径(rp) 公式:rp = k_tet * (hbar/(mp*c)) * (1 - (alpha / (k_tet * pi))) > 结果:8.40747e-16 m > CODATA:8.40750(64)e-16 m > 误差:3 ppm [E] 缪子异常(a_mu) 公式:a_mu = (alpha/2pi) + (alpha^2/k_ico) + (alpha^3/k_dyn^2) > 结果:0.00116592506 > CODATA:0.00116592059 > 误差:4 ppm [F] 质子磁矩(mu_p) 公式:mu_p = (k_dyn^3 / k_vol) - (alpha / ((1+k_dyn)/2)) > 结果:5.5856599 > CODATA:5.5856947 > 误差:6 ppm [G] 中子-质子质量差(dm) // 压缩:二十面体面(20)到立方体顶点(8) 公式:dm = me * ((k_fac/k_cub) + k_tet*alpha + alpha/k_tet) > 结果:1.293345 MeV > CODATA:1.293332 MeV > 误差:10 ppm </code></pre> 3. 问题<p>在没有可调参数的约束下,随机推导这7个物理常数达到<10ppm精度的联合p值是多少?<p>来源:https://doi.org/10.5281/zenodo.17847770
查看原文
PROBLEM<p>Calculate the combined probability of deriving 7 fundamental physical constants to &lt;10ppm precision using only the following inputs and discrete geometric keys.<p>CONSTRAINT: Zero continuous tunable parameters allowed (all coefficients must be integers or fixed geometric roots).<p>1. DEFINITIONS<p><pre><code> [A] INPUTS (CODATA 2022) alpha = 7.2973525643e-3 &#x2F;&#x2F; Fine-structure constant c = 299792458 &#x2F;&#x2F; Speed of light hbar = 1.054571817e-34 &#x2F;&#x2F; Reduced Planck constant mp = 1.67262192369e-27 &#x2F;&#x2F; Proton mass [B] DISCRETE KEYS (Fixed geometry&#x2F;topology) k_vol = 2 &#x2F;&#x2F; Volume scale (3D) k_dyn = sqrt(5) &#x2F;&#x2F; Dynamic scale (sqrt(2D-1)) k_bit = 64 &#x2F;&#x2F; Binary horizon seed k_tet = 4 &#x2F;&#x2F; Tetrahedron vertices k_cub = 8 &#x2F;&#x2F; Cube vertices k_ico = 12 &#x2F;&#x2F; Icosahedron vertices k_fac = 20 &#x2F;&#x2F; Icosahedron faces k_spi = 24 &#x2F;&#x2F; Spinor loop factor [C] GLOBAL DERIVED SCALES (Computed once from inputs + keys) H_g = 2^(2*k_bit) &#x2F;&#x2F; Gravitational horizon (2^128) H_m = 2^k_bit &#x2F;&#x2F; Metric horizon (2^64) Lu = (hbar&#x2F;(mp*c)) \* H_m \* sqrt(2) &#x2F; (1 + alpha&#x2F;3) &#x2F;&#x2F; Fundamental lattice unit </code></pre> 2. DERIVATIONS<p><pre><code> [A] GRAVITATIONAL CONSTANT (G) Formula: G = (hbar \* c \* k_vol \* (1 + alpha&#x2F;3)^2) &#x2F; (mp^2 \* H_g) &gt; Result : 6.6742439e-11 &gt; CODATA : 6.67430(15)e-11 &gt; ERROR : 8 ppm [B] ELECTRON MASS (me) &#x2F;&#x2F; Holographic inverse of icosahedral shell defined by Lu Formula: me = (2 \* alpha \* hbar) &#x2F; (c \* (Lu \* pi^2 \* (1 + alpha - alpha&#x2F;k_spi) \* sin(72))) &gt; Result : 9.1093836e-31 kg &gt; CODATA : 9.1093837e-31 kg &gt; ERROR : 0.01 ppm [C] FINE STRUCTURE CONSTANT (alpha) - geometric check Formula: 1&#x2F;x = (k_tet*pi^3 + pi^2 + pi) - (alpha&#x2F;k_spi) &gt; Result : 137.0359996 &gt; CODATA : 137.0359990 &gt; ERROR : 0.005 ppm [D] PROTON RADIUS (rp) Formula: rp = k_tet * (hbar&#x2F;(mp*c)) * (1 - (alpha &#x2F; (k_tet \* pi))) &gt; Result : 8.40747e-16 m &gt; CODATA : 8.40750(64)e-16 m &gt; ERROR : 3 ppm [E] MUON ANOMALY (a_mu) Formula: a_mu = (alpha&#x2F;2pi) + (alpha^2&#x2F;k_ico) + (alpha^3&#x2F;k_dyn^2) &gt; Result : 0.00116592506 &gt; CODATA : 0.00116592059 &gt; ERROR : 4 ppm [F] PROTON MAGNETIC MOMENT (mu_p) Formula: mu_p = (k_dyn^3 &#x2F; k_vol) - (alpha &#x2F; ((1+k_dyn)&#x2F;2)) &gt; Result : 5.5856599 &gt; CODATA : 5.5856947 &gt; ERROR : 6 ppm [G] NEUTRON-PROTON MASS DIFF (dm) &#x2F;&#x2F; Compression: icosahedron faces (20) into cube vertices (8) Formula: dm = me \* ((k_fac&#x2F;k_cub) + k_tet\*alpha + alpha&#x2F;k_tet) &gt; Result : 1.293345 MeV &gt; CODATA : 1.293332 MeV &gt; ERROR : 10 ppm </code></pre> 3. QUESTION<p>Given the constraint of zero tunable parameters, what is the combined p-value of deriving these 7 physical constants to &lt;10ppm precision by random chance?<p>Source: https:&#x2F;&#x2F;doi.org&#x2F;10.5281&#x2F;zenodo.17847770