启动 HN:Tamarind Bio(YC W24)——药物发现的 AI 推理服务提供商

4作者: denizkavi大约 1 个月前原帖
嗨,HN,我们是来自Tamarind Bio的Deniz和Sherry(<a href="https://www.tamarind.bio">https://www.tamarind.bio</a>)。Tamarind是一个为AI药物发现提供推理服务的平台,支持像AlphaFold这样的模型。生物制药公司利用我们领先的开源模型库,通过计算方法设计新药。 这里有一个演示:<a href="https://youtu.be/luoMApPeglo" rel="nofollow">https://youtu.be/luoMApPeglo</a> 两年前,我在斯坦福大学的一个实验室工作,负责为我的实验室同事运行模型。一些博士后会让我依次运行一组1-5个模型,输入数以万计的数据,然后我会在大学集群中设置工作流程后,通过电子邮件将结果发回给他们。 在某个时刻,所有组织的计算生物学工作都通过一个本科生来完成变得不再合理,因此我们创建了Tamarind,作为所有分子AI工具的集中平台,能够在不需要技术背景的情况下大规模使用。如今,我们已被许多前20大制药公司、数十家生物科技公司和成千上万的科学家所使用。 当我们开始在大型制药公司获得采用时,我们发现这个问题依然存在。我认识一些数据科学的主管,他们的工作一半可以描述为为他人运行脚本。 许多公司也已经放弃了内部构建的解决方案,转而切换到我们的平台,因为处理GPU基础设施和对接Docker容器并不是一个令人兴奋的问题,尤其是当你所在的公司正在努力治愈癌症时。 与非专业的推理提供商不同,我们为开发者构建了程序化接口,同时也提供了一个科学家友好的网页应用,因为我们的大多数用户并非技术人员。其中一些用户曾经从动物血液中提取蛋白质,而现在则用AI在Tamarind上生成蛋白质,取代了这一过程。 除了为我们提供的每个模型生成图像外,我们还设计了一个标准化的架构,以便能够共享每个模型的数据格式。我们构建了一个定制的调度程序和队列,优化了横向扩展(每次推理调用需要几分钟到几小时,并且一次只在一个GPU上运行),同时在CPU和GPU之间分配任务以实现最佳时机。 随着我们逐渐承担起生物制药研发AI需求的相当一部分,我们的服务范围已超越了仅提供开源协议库。 我们早期看到的一个常见用例是需要将多个模型连接成管道,并拥有可重复、一致的协议来替代物理实验。一旦我们成为构建计算科学内部工具的平台,用户们开始询问是否可以将自己的模型接入平台。 从那时起,我们现在支持微调、为任意Docker容器构建用户界面、连接湿实验室数据源等功能! 如果您对我们的工作感兴趣,请通过deniz[at]tamarind.bio与我联系,我们正在招聘!查看我们的产品,网址是<a href="https://app.tamarind.bio">https://app.tamarind.bio</a>,如果您有任何反馈,欢迎告诉我们,以支持生物科技行业今天如何使用AI。
查看原文
Hi HN, we&#x27;re Deniz and Sherry from Tamarind Bio (<a href="https:&#x2F;&#x2F;www.tamarind.bio">https:&#x2F;&#x2F;www.tamarind.bio</a>). Tamarind is an inference provider for AI drug discovery, serving models like AlphaFold. Biopharma companies use our library of leading open-source models to design new medicines computationally.<p>Here’s a demo: <a href="https:&#x2F;&#x2F;youtu.be&#x2F;luoMApPeglo" rel="nofollow">https:&#x2F;&#x2F;youtu.be&#x2F;luoMApPeglo</a><p>Two years ago, I was hired at a Stanford lab to run models for my labmates. Some post-doc would ask me to run a set of 1-5 models in sequence with tens of thousands inputs and I would email them back the result after setting up the workflow in the university cluster.<p>At some point, it became unreasonable that all of an organization&#x27;s computational biology work would go through an undergrad, so we built Tamarind as a single place for all molecular AI tools, usable at massive scale with no technical background needed. Today, we are used by much of the top 20 pharma, dozens of biotechs and tens of thousands of scientists.<p>When we started getting adoption in the big pharma companies, we found that this problem also persisted. I know directors of data science, where half their job could be described as running scripts for other people.<p>Lots of companies have also deprecated their internally built solution to switch over, dealing with GPU infra and onboarding docker containers not being a very exciting problem when the company you work for is trying to cure cancer.<p>Unlike non-specialized inference providers, we build both a programmatic interface for developers along with a scientist-friendly web app, since most of our users are non-technical. Some of them used to extract proteins from animal blood before replacing that process with using AI to generate proteins on Tamarind.<p>Besides grinding out images for each of the models we serve, we’ve designed a standardized schema to be able to share each model’s data format. We’ve built a custom scheduler and queue optimized for horizontal scaling (each inference call takes minutes to hours, and runs on one GPU at a time), while splitting jobs across CPUs and GPUs for optimal timing.<p>As we&#x27;ve grown to handle a substantial portion of the biopharma R&amp;D AI demand on behalf of our customers, we&#x27;ve expanded beyond just offering a library of open source protocols.<p>A common use case we saw from early on was the need to connect multiple models together into pipelines, and having reproducible, consistent protocols to replace physical experiments. Once we became the place to build internal tools for computational science, our users started asking if they could onboard their own models to the platform.<p>From there, we now support fine-tuning, building UIs for arbitrary docker containers, connecting to wet lab data sources and more!<p>Reach out to me at deniz[at]tamarind.bio if you’re interested in our work, we are hiring! Check out our product at <a href="https:&#x2F;&#x2F;app.tamarind.bio">https:&#x2F;&#x2F;app.tamarind.bio</a> and let us know if you have any feedback to support how the biotech industry uses AI today.