问HN:Lichess与Stockfish之间的差异
我正在尝试理解Lichess的分析板与我自己的Stockfish设置之间的差异。
在Lichess(基于浏览器的分析)上,Stockfish在我的Redmi Note 14 Pro上报告接近1 MN/s。然而,当我通过Python程序使用本地可执行文件运行Stockfish时,我只看到大约600 kN/s。
令人困惑的是,尽管报告的速度更高,Lichess达到深度30大约需要2分30秒,而我的本地设置在大约53秒内就能达到深度30,尽管它报告的N/s较低。Lichess在频繁的评估更新方面似乎也显得更加“活跃”。
我怀疑这与N/s的测量或显示方式(瞬时值与平均值)、搜索配置的差异(连续搜索与重启、MultiPV、哈希重用)或引擎驱动方式的开销(例如,用户界面或I/O限制)有关。这也引发了一个问题,即“深度30”是否可以在不同的前端之间直接比较。
有没有人研究过Lichess是如何报告Stockfish速度的,或者为什么一个显示更高N/s的设置仍然需要显著更长的时间才能达到相同的名义深度?
查看原文
I’m trying to understand a discrepancy between Lichess’s analysis board and my own Stockfish setup.<p>On Lichess (browser-based analysis), Stockfish reports close to 1 MN/s on my Redmi Note 14 Pro. However, when I run Stockfish locally via a Python program using the native executable, I only see around 600 kN/s.<p>What’s confusing is that despite the higher reported speed, Lichess takes about 2:30 to reach depth 30, while my local setup reaches depth 30 in about 53 seconds, even though it reports a lower N/s. Lichess also appears much more “active” in terms of frequent evaluation updates.<p>I suspect this has to do with how N/s is measured or displayed (instantaneous vs average), differences in search configuration (continuous search vs restarts, MultiPV, hash reuse), or overhead from the way the engine is driven (e.g., UI or I/O throttling). It also raises the question of whether “depth 30” is directly comparable across different frontends.<p>Has anyone looked into how Lichess reports Stockfish speed, or why a setup showing higher N/s can still take significantly longer to reach the same nominal depth?