展示HN:NBA球队表现与预测市场预期的对比

1作者: helloiamvu24 天前原帖
嗨,HN,我们构建了这个。 NBA Edge Index使用来自Polymarket(真实货币预测市场)的赛前胜率。在每场比赛结束后,我们将结果与赛前赔率进行比较。超出预期的表现会提升球队的评分,而表现不佳则会降低评分。每支球队的初始评分为2000,评分在整个赛季中逐场累积。比赛结束后,更新会自动进行。 我们发现的一些有趣的数据点: Polymarket的赔率在平均水平上相当准确:胜率在80%以上的球队赢得比赛的概率为82%(119场比赛),而胜率在60%到69%的球队赢得比赛的概率为63%。 表现最超出预期的球队:菲尼克斯太阳队,超出预期14.7%(市场给他们的平均赔率为45.8%;他们的胜率为60.5%)。 市场上被高估最多的球队:克利夫兰骑士队——胜率为55.8%,但市场给他们的隐含赔率为67.4%。他们作为重磅热门输掉了12场比赛。 最大冷门:犹他爵士队在1月13日以18.5%的市场赔率击败克利夫兰;我们的优势模型给犹他70.9%的胜率。 稳定性:在每支球队大约打了40场比赛后,排名开始显著分化,早期的噪音会平滑掉。 我们正在开发更多类似的指数。核心理念是:预测市场数据分散在数百个合约中,这些合约会到期并消失。我们将其转化为持久的、可追踪的指数。 我们使用的两种模式: 综合模式——将相关市场融合为一个数字。我们的全球冲突风险指数将大约15个Polymarket合约(乌克兰、台湾、伊朗)合并为一个数字。 滚动模式——自动替换到期合约。例如,我们的天气指数通过每天滚动更新来跟踪6个城市的温度偏差。 期待听到反馈或其他指数的建议。 实时NBA Edge指数在这里: [https://attena.xyz/nba](https://attena.xyz/nba)
查看原文
Hi HN, we built this.<p>The NBA Edge Index uses pre-game win probabilities from Polymarket (real-money prediction markets). After each game finalizes, we compare the outcome to the pre-game odds. Beating expectations moves a team&#x27;s rating up; underperforming moves it down. Each team starts at 2000, and ratings accumulate game-by-game throughout the season. Updates happen automatically after games finalize.<p>A few data points we found interesting:<p>Polymarket odds are pretty accurate on average: teams priced at 80%+ won 82% of the time (119 games), and teams priced 60–69% won 63%.<p>Biggest overperformer: Phoenix Suns, +14.7% vs expectations (market gave them 45.8% avg odds; they won 60.5%).<p>Most overrated by market: Cleveland Cavaliers — 55.8% win rate but market gave them 67.4% implied. They&#x27;ve lost 12 games as heavy favorites.<p>Biggest called upset: Utah Jazz beat Cleveland on Jan 13 with 18.5% market odds; our edge model gave Utah 70.9%.<p>Stability: After ~40 games per team, rankings start to diverge meaningfully and early noise smooths out.<p>We&#x27;re working on more indices like this. The core idea: prediction market data is fragmented across hundreds of contracts that expire and disappear. We turn it into persistent, trackable indices.<p>Two patterns we use:<p>Composite — Blend related markets into one number. Our Global Conflict Risk Index combines ~15 Polymarket contracts (Ukraine, Taiwan, Iran) into a single number.<p>Rolling — Auto-replace expiring contracts. For example our weather indices track 6-city temperature deviations by rolling forward daily.<p>Curious to hear feedback or suggestions of ideas for other indices.<p>The live NBA Edge index is here: <a href="https:&#x2F;&#x2F;attena.xyz&#x2F;nba" rel="nofollow">https:&#x2F;&#x2F;attena.xyz&#x2F;nba</a>