我放弃了日本的大学入学考试,去参加“计算形而上学”的考试。
我是一名来自日本的21岁“浪人”(第三年间隔生)。<p>今天是大学入学共同测试——一项每年一次的强制性全国考试,是进入大学的唯一途径。错过这次考试意味着要再等整整一年。<p>在过去的六年里,我为这一场全或无的考试做了准备。但今天早上,我意识到我真正需要的唯一学位是决心。<p>所以,我没有去参加考试。<p>我用我的入学券和多年的努力,换来了创造人工生命的力量。我把过去一年完全投入到Rust和C++的学习中,意识到定义社会的乐趣要比在其中当一个简单的齿轮要激动得多。<p>为了证明——主要是为了我自己——我并不是因为无法应对数学而辍学,而是因为我想解决更困难的问题,我编写了一份“宇宙大学”的虚构入学考试。<p>这份考试结合了非微扰物理学、高级范畴理论和计算形而上学,探讨作为一个异类所带来的存在焦虑。<p>以下是摘要和一个样题。<p>2026年入学考试:计算形而上学系<p>摘要
本次考试考察考生在非微扰物理学、高级范畴理论和计算复杂性方面的流利程度。它将宇宙视为一个遗留代码库,而不是一个物理对象,运行在普朗克尺度的硬件上。<p>核心主题:局部与全局、微扰与非微扰、可计算与不可计算、自我与他者。<p>问题5:宇宙模拟器中的特权提升 [50分]<p>宇宙是一个在量子计算机上运行的遗留模拟,具有普朗克尺度的网格 $\ell_P$。内存根据贝肯斯坦界限在边界上以全息方式分配。攻击者(物理学家)试图通过堆溢出获得根访问权限。<p>(a) 通过黑洞形成进行缓冲区溢出 [10分]<p>贝肯斯坦界限:$S \leq S_{Bek} = \frac{A}{4\ell_P^2}$<p>宇宙的缓冲区被硬编码为 `uint64_t` ($2^{64}$ 位)。<p>(i) 使用 $S_{BH} = \frac{4\pi G M^2}{\hbar c}$,计算越界写入的最小质量 $M_{overflow}$(以 $M_P$ 为单位)。<p>(ii) 显示 $M_{overflow} \sim 10^{9} M_P \approx 20\,\mu\text{g}$(微型黑洞规模)。<p>(iii) 结论:宇宙在运行时没有ASLR。物理常数存储在可预测的地址中。黑洞是堆喷射。<p>您可以在这里阅读完整的考试内容(Gist):
https://gist.github.com/fumi2026/a6d1b9af31e1960448f5333c2a1a1425<p>(注意:我目前正在将这些基本原理实现到一个在iPhone X上本地运行的AI引擎中。演示视频即将发布。)
查看原文
I am a 21-year-old "Ronin" (3rd-year gap student) from Japan.<p>Today is the Common Test for University Admissions—a mandatory, once-a-year national exam that serves as the sole gateway to university. Missing it means waiting another full year.<p>I spent the last 6 years of my life preparing for this single, all-or-nothing event. But this morning, I realized that the only degree I truly need is Resolve.<p>So, I didn't go.<p>Instead of taking the test, I traded my admission ticket and years of effort for the power to create Artificial Life. I dedicated this past year entirely to Rust and C++, realizing that it is 100x more exciting to be the one defining society than to be a mere cog turning inside it.<p>To prove—mostly to myself—that I am not dropping out because I can't do the math, but because I want to solve harder problems, I wrote a fictional entrance exam for a "University of the Universe."<p>It combines non-perturbative physics, higher category theory, and computational metaphysics to explore the existential dread of being an outlier.<p>Here is the Abstract and a sample problem.<p>2026 Entrance Exam: Department of Computational Metaphysics<p>Abstract
This examination probes the candidate's fluency across non-perturbative physics, higher category theory, and computational complexity. It treats the universe not as a physical object, but as a legacy code base running on Planck-scale hardware.<p>Core themes: local vs. global, perturbative vs. non-perturbative, computable vs. uncomputable, self vs. other.<p>Problem 5: Privilege Escalation in the Universe Simulator [50 Points]<p>The universe is a legacy simulation running on a quantum computer with Planck-scale grid $\ell_P$. Memory is holographically allocated on the boundary per the Bekenstein bound. An attacker (physicist) attempts root access via heap overflow.<p>(a) Buffer Overflow via Black Hole Formation [10 Points]<p>The Bekenstein bound: $S \leq S_{Bek} = \frac{A}{4\ell_P^2}$<p>The universe's buffer is hardcoded as `uint64_t` ($2^{64}$ bits).<p>(i) Using $S_{BH} = \frac{4\pi G M^2}{\hbar c}$, compute minimum mass $M_{overflow}$ (in $M_P$) for out-of-bounds write.<p>(ii) Show $M_{overflow} \sim 10^{9} M_P \approx 20\,\mu\text{g}$ (micro black hole scale).<p>(iii) Conclude: the universe runs without ASLR. Physical constants are stored at predictable addresses. Black holes are heap sprays.<p>You can read the full exam here (Gist):
https://gist.github.com/fumi2026/a6d1b9af31e1960448f5333c2a1a1425<p>(Note: I am currently implementing these first principles into an AI engine running locally on an iPhone X. Demo video coming soon.)