人工智能创造了过度效率。组织必须适应这一变化。
人工智能不仅仅是提高生产力:它创造了*过度效率*。<p>个人和小团队现在能够比现有组织的设计更快地生成决策、选项和倡议,而这些组织本身并未准备好去合法化、协调或吸收这些内容。瓶颈已经从执行转移到了治理。<p>当过剩的生产能力积累而没有吸收层时,组织并不会逐渐适应。历史上,它们往往会冻结:更加严格的规则、集中化、禁令和脱钩。<p>我们在新冠疫情期间看到了类似的反应:当系统无法在地方吸收冲击时,它们便会在全球范围内关闭。<p>似乎被讨论得不够充分的是<i>吸收</i>:不是“我们能多快生产”,而是<i>一个组织能够在不进行防御性关闭的情况下,代谢多少决策、选项和变更</i>。<p>有两个机制似乎相关但理论化不足:(1) 小规模的本地过程变更,重新分配协调和决策的负担;(2) 持续的技能和角色转变,随着人们围绕仍需决策、维护和合法化的事项重新定位。<p>我一直在尝试将其视为一种“导电”问题,即人类的决策和合法性如何与世代、人工智能和人类并行流动。<p>如果你见过组织在这方面表现良好(或失败得很惨),我很想知道:究竟是什么让系统能够吸收人工智能驱动的过度效率,而不回归到控制、排名、裁员或关闭的状态?
查看原文
AI doesn’t just increase productivity: it creates *over-efficiency*.<p>Individuals and small teams can now generate decisions, options, and initiatives faster than existing organizations were designed to legitimize, coordinate, or absorb. The bottleneck has shifted from execution to governance.<p>When surplus productive capacity accumulates without an absorption layer, organizations don’t gradually adapt. Historically, they freeze: tighter rules, centralization, bans, decoupling.<p>We saw a similar reflex during COVID: when systems couldn’t absorb shock locally, they shut down globally.<p>What seems under-discussed is <i>absorption</i>: not "how fast can we produce" but <i>how many decisions, options, and changes an organization can metabolize without defensive closure</i>.<p>Two mechanisms seem relevant but under-theorized: (1) small, local process changes that redistribute coordination and decision load; (2) continuous skill and role shifts, as people reposition around what still needs to be decided, maintained, and legitimized.<p>I’ve been trying to think about this as a kind of "conduction" problem, how human decision-making and legitimacy flow alongside generations, AI and people.<p>If you’ve seen organizations handle this well (or fail badly), I’d be curious: what actually lets systems absorb AI-driven over-efficiency without reverting to control, ranking, layoffs or shutdown?