展示HN:OpenSymbolicAI – 具有类型变量的智能体,而不仅仅是上下文填充

2作者: rksart4 天前原帖
嗨,HN, 我们花了一年时间构建AI代理,但一直遇到同样的问题:提示工程(prompt engineering)并不像软件工程那样。它更像是在猜测。 我们创建了OpenSymbolicAI,旨在将代理开发转变为真正的编程。它是一个开源框架(MIT许可证),允许您使用类型化原语、明确的分解和单元测试来构建代理。 主要问题:上下文窗口的滥用 大多数代理框架(如ReAct)迫使您将工具输出重新放入LLM(大型语言模型)的上下文窗口,以决定下一步。 代理搜索数据库。 代理返回50KB的JSON。 您将这50KB的内容粘贴回提示中,只是为了问“我接下来该做什么?” 这既慢又昂贵,还会让模型感到困惑。 解决方案:将数据作为变量 在OpenSymbolicAI中,LLM生成一个操作变量的计划(代码)。实际的重数据(搜索结果、PDF内容、API负载)存储在Python/运行时变量中,直到某个特定原语真正需要读取它时,才会传递给LLM上下文。 可以将其视为代理的引用传递。LLM操作变量句柄(文档),而Python运行时存储实际数据。 示例:RAG代理 与其让LLM基于一堆文本进行幻觉式的计划,不如直接编写逻辑来操作数据容器。 ```python class ResearchAgent(PlanExecute): @primitive def retrieve_documents(self, query: str) -> list[Document]: """从向量数据库中获取重文档。""" # 返回保持在Python内存中的重对象 return vector_store.search(query) @primitive def synthesize_answer(self, docs: list[Document]) -> str: """利用文档生成答案。""" # 这是唯一一步实际读取文档文本 context = "\n".join([d.text for d in docs]) return llm.generate(context) @decomposition(intent="Research quantum computing") def _example_flow(self): # LLM生成此执行计划。 # 关键是:LLM管理'docs'变量符号, # 但在规划过程中从未看到其内部的庞大负载。 docs = self.retrieve_documents("当前量子计算的状态") return self.synthesize_answer(docs) ``` agent = ResearchAgent() agent.run("研究固态电池的最新进展") 讨论 我们希望听到社区的反馈: 您在提示工程的脆弱性方面遇到了哪些困难? 什么会让您愿意尝试将提示视为代码? 还有哪些领域可以让这种方法大放异彩? 为了使其适用于您的用例,缺少什么才能使其准备好投入生产? 代码故意保持简单的Python,没有魔法,没有框架锁定。如果这种方法引起共鸣,您可以轻松地根据您的具体需求进行调整或与现有代码库集成。 代码库: 核心(Python): [https://github.com/OpenSymbolicAI/core-py](https://github.com/OpenSymbolicAI/core-py) 文档: [https://www.opensymbolic.ai/](https://www.opensymbolic.ai/) 博客(技术深入): [https://www.opensymbolic.ai/blog](https://www.opensymbolic.ai/blog)
查看原文
Hi HN,<p>We&#x27;ve spent the last year building AI agents and kept hitting the same wall: prompt engineering doesn&#x27;t feel like software engineering. It feels like guessing.<p>We built OpenSymbolicAI to turn agent development into actual programming. It is an open-source framework (MIT) that lets you build agents using typed primitives, explicit decompositions, and unit tests.<p>THE MAIN PROBLEM: CONTEXT WINDOW ABUSE<p>Most agent frameworks (like ReAct) force you to dump tool outputs back into the LLM&#x27;s context window to decide the next step.<p>Agent searches DB.<p>Agent gets back 50kb of JSON.<p>You paste that 50kb back into the prompt just to ask &quot;What do I do next?&quot;<p>This is slow, expensive, and confuses the model.<p>THE SOLUTION: DATA AS VARIABLES<p>In OpenSymbolicAI, the LLM generates a plan (code) that manipulates variables. The actual heavy data (search results, PDF contents, API payloads) is stored in the Python&#x2F;runtime variables and is never passed through the LLM context until a specific primitive actually needs to read it.<p>Think of it as pass-by-reference for Agents. The LLM manipulates variable handles (docs), while the Python runtime stores the actual data.<p>EXAMPLE: A RAG AGENT<p>Instead of the LLM hallucinating a plan based on a wall of text, it simply writes the logic to manipulate the data containers.<p>class ResearchAgent(PlanExecute):<p><pre><code> @primitive def retrieve_documents(self, query: str) -&gt; list[Document]: &quot;&quot;&quot;Fetches heavy documents from vector DB.&quot;&quot;&quot; # Returns heavy objects that stay in Python memory return vector_store.search(query) @primitive def synthesize_answer(self, docs: list[Document]) -&gt; str: &quot;&quot;&quot;Consumes documents to generate an answer.&quot;&quot;&quot; # This is the ONLY step that actually reads the document text context = &quot;\n&quot;.join([d.text for d in docs]) return llm.generate(context) @decomposition(intent=&quot;Research quantum computing&quot;) def _example_flow(self): # The LLM generates this execution plan. # Crucially: The LLM manages the &#x27;docs&#x27; variable symbol, # but never sees the massive payload inside it during planning. docs = self.retrieve_documents(&quot;current state of quantum computing&quot;) return self.synthesize_answer(docs) </code></pre> agent = ResearchAgent() agent.run(&quot;Research the latest in solid state batteries&quot;)<p>DISCUSSION<p>We&#x27;d love to hear from the community about:<p>Where have you struggled with prompt engineering brittleness?<p>What would convince you to try treating prompts as code?<p>Are there other domains where this approach would shine?<p>What&#x27;s missing to make this production-ready for your use case?<p>The code is intentionally simple Python, no magic, no framework lock-in. If the approach resonates, it&#x27;s easy to adapt to your specific needs or integrate with existing codebases.<p>Repos:<p>Core (Python): <a href="https:&#x2F;&#x2F;github.com&#x2F;OpenSymbolicAI&#x2F;core-py" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;OpenSymbolicAI&#x2F;core-py</a><p>Docs: <a href="https:&#x2F;&#x2F;www.opensymbolic.ai&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.opensymbolic.ai&#x2F;</a><p>Blog (Technical deep dives): <a href="https:&#x2F;&#x2F;www.opensymbolic.ai&#x2F;blog" rel="nofollow">https:&#x2F;&#x2F;www.opensymbolic.ai&#x2F;blog</a>