问HN:Mem0存储记忆,但不学习用户模式

4作者: fliellerjulian2 天前原帖
我们是一家YC W23的公司,专注于为工程实验室构建人工智能代理。我们的客户需要重复进行类似的分析,而代理在每次会话中都像一张白纸一样处理。 我们考察了Mem0、Letta/MemGPT以及其他类似的记忆解决方案。它们解决的是不同的问题:存储对话中的事实——“用户偏好Python”,“用户是素食者”。这是一种带有语义搜索的键值记忆,虽然有用,但并不是我们所需要的。 我们需要的是一种能够从用户行为中隐式学习模式的系统。当客户连续三次将阈值从85%修正为80%时,代理应该能够在下次会话中自动识别这一点。当一个团队总是使用更严格的过滤条件重新运行时,系统也应该能够捕捉到这一模式。 因此,我们围绕一个简单的想法构建了一个内部API:用户的修正是最有价值的数据。我们不是简单地摄取聊天信息并希望大型语言模型(LLM)能提取出有用的信息,而是捕捉结构化事件——代理生成了什么,用户更改了什么,他们接受了什么。后台作业定期运行LLM,以提取模式并为每个用户/团队/组织构建一个带有置信度加权的偏好档案。 在每次会话之前,代理会获取该档案,并随着时间的推移变得更加智能。 我看到的差距是: Mem0 = 记忆存储 + 检索。无法学习模式。 Letta = 自我编辑代理记忆。更接近,但没有从行为中隐式学习。 缺失的是一个偏好学习层,它观察用户如何与代理互动,并构建一个不断演变的模型。就像一个用于代理个性化的推荐引擎。 我为我们的领域构建了这个系统,但这种方法是领域无关的。我很好奇其他人在他们的代理中是否也遇到了同样的瓶颈。乐意详细分享架构、提示和置信度评分的方法。
查看原文
We&#x27;re a YC W23 company building AI agents for engineering labs - our customers run similar analyses repeatedly, and the agent treated every session like a blank slate.<p>We looked at Mem0, Letta&#x2F;MemGPT, and similar memory solutions. They all solve a different problem: storing facts from conversations — &quot;user prefers Python,&quot; &quot;user is vegetarian.&quot; That&#x27;s key-value memory with semantic search. Useful, but not what we needed.<p>What we needed was something that learns user patterns implicitly from behavior over time. When a customer corrects a threshold from 85% to 80% three sessions in a row, the agent should just know that next time. When a team always re-runs with stricter filters, the system should pick up on that pattern. So we built an internal API around a simple idea: user corrections are the highest-signal data. Instead of ingesting chat messages and hoping an LLM extracts something, we capture structured events — what the agent produced, what the user changed, what they accepted. A background job periodically runs an LLM pass to extract patterns and builds a confidence-weighted preference profile per user&#x2F;team&#x2F;org.<p>Before each session, the agent fetches the profile and gets smarter over time. The gap as I see it:<p>Mem0 = memory storage + retrieval. Doesn&#x27;t learn patterns.<p>Letta = self-editing agent memory. Closer, but no implicit learning from behavior.<p>Missing = a preference learning layer that watches how users interact with agents and builds an evolving model. Like a rec engine for agent personalization.<p>I built this for our domain but the approach is domain-agnostic. Curious if others are hitting the same wall with their agents. Happy to share the architecture, prompts, and confidence scoring approach in detail.