返回首页
最新
我开发了一个Excel插件,可以连接到Ollama,这样您就可以直接在Excel中运行本地的LLM,例如Llama3。我将其命名为XLlama。
您可以像使用普通公式一样使用它:
=XLlamaPrompt("Excel是一个数据库吗?")
或者在整个范围内运行它。
不需要API调用。不需要云服务。不需要订阅。一切都在本地运行。
它非常适合快速任务,比如从文本中提取姓名、电子邮件或电话号码,或者在不离开Excel的情况下进行轻量的数据分析。
我非常希望能收到反馈,特别是来自每天使用Excel的用户。
我创建了JustGrind作为一个个人执行伙伴——一个能够根据你的目标进行调整的AI聊天机器人,它会让你保持责任感,并在你失去动力时轻轻推动你回到正轨。
与普通的习惯追踪器不同,JustGrind利用你在注册时提供的背景信息来个性化提示,跟踪你的坚持情况,并帮助你突破瓶颈。它专为企业家、建设者以及那些追求雄心壮志目标的人设计,他们无法承受浪费时间的代价。
目前它处于早期发布阶段,我希望能够得到想要测试它并告诉我缺失之处的人的反馈。
<a href="https://justgrinds.vercel.app/" rel="nofollow">https://justgrinds.vercel.app/</a>
Clip是我最近开发的一个Chrome扩展,作为Copi的附加功能。<p>Copi允许用户轻松地将安全内容分享给客户,并跟踪他们的参与情况。有了Clip,用户无需再登录我们的平台即可获取链接。<p>他们可以通过这个Chrome扩展访问任何已标记的Copi链接,并随时与客户分享内容~<p>欢迎尝试,并告诉我你的反馈。谢谢!
我只是想知道,当人工智能完成你们30-50%的工作时,士气如何?你们公司是否在招聘更多员工,或者已经停止招聘软件工程师?管理层是否在施加更多压力以完成更多工作?
将某人标记为懒惰的替罪羊
“这就是他们的原因” “……这就是他们的原因”
一个人如何才能摆脱这个循环
使用QuotationGenie,您可以:快速创建定制报价,生成发票并跟踪付款状态(已付款、未付款、逾期),数字化起草、发送和签署合同。
我在为多个工具处理报价、发票和合同而感到沮丧后,构建了这个工具——现在所有功能都在一个仪表板上整合得非常顺畅。
非常希望听到您对可用性、功能以及您希望看到的下一步的反馈。
感谢您的关注!
# 1400年前的数字校验和供人思考
一段1400年前的文本似乎实现了我们在现代计算中使用的相同错误检测原理——而且不需要额外的校验和数据空间。
## 挑战
想象一下,你的任务是设计一个文本完整性验证系统,该系统必须:
- 经得起1400年以上的手动复制
- 在没有任何额外元数据或校验和的情况下工作
- 让具备基本算术能力的人能够验证
- 无法被伪造或意外复制
听起来不可能?那就来看看《古兰经》。
## 结构
《古兰经》由114章组成,每章包含不同数量的经文,例如,第1章有7节,第2章有286节,第3章有200节。全书的经文总数为6236节。值得注意的是,这种看似随机的结构创造了一个自我验证的数学模式。
## 校验和算法
考虑集合Q为所有章节,每章表示为一对(c, v),其中c是章节编号,v是其经文数量。我们有|Q| = 114,注意对于Q:
- ∑v = 6236,表示Q中所有章节的经文总数(即全书的总经文数,7+286+200+...+5=6236)
- ∑c = 6555,表示Q中所有章节编号的总和(即所有章节编号的和1+2+...+114=6555)
现在将114章分为两个集合:
- 集合A:章节满足(c + v) % 2 == 0(偶数奇偶性:c和v均为偶数或均为奇数)
- 集合B:章节满足(c + v) % 2 == 1(奇数奇偶性:一个为偶数另一个为奇数)
### 结果在统计上是不可能的
1. 完美平衡:|A| = |B| = 57章,尽管每章的经文数量似乎是随机的。
2. 经文数量与章节编号:集合A中所有经文的总和等于集合B中所有章节编号的总和。
3. 关键点:
- 在子集A中,∑(c + v) = 6236 = ∑v in Q(这是全书经文总数的校验和)
- 在子集B中,∑(c + v) = 6555 = ∑c in Q(这是全书章节编号总数的校验和)
## 这为什么重要
这不仅仅是数字命理学。这是一个结构性的校验和,它:
- 使用内容本身作为错误检测机制
- 不需要额外的存储开销
- 使得诸如删除或添加经文等损坏立即可检测
- 无法偶然重现
现代校验和会增加额外的位以检测传输错误。而这部古老的文本则将校验和嵌入到其结构中——每章的经文数量就是校验和。
## 计算机科学的角度
我们看到的似乎是:
- 自我验证的数据结构:其组织证明了自身的完整性
- 零开销的错误检测:不需要额外空间
- 分布式冗余:多个数学关系相互验证
- 人类可读的算法:可用笔和纸进行验证
对于一部比计算机早1400年的文本能够展示这些原理,暗示了:
1. 7世纪阿拉伯地区的非凡数学复杂性,或
2. 还有更深层次的东西在起作用
## 挑战
无论你是信徒还是怀疑者,这种数学结构都是不可否认的,值得深入研究。完整的模式即使对于现代人来说也会令人印象深刻,更不用说是来自中世纪的文本了。
对于好奇者:完整的数学分析揭示了涉及数字7的模式、基于字母频率的“公钥”和几何关系。
你怎么看?巧合、古代数学天才,还是完全不同的东西?
开源“Vectorless”,一款不使用嵌入向量的新型PDF聊天机器人。
<p>Github 仓库: https://github.com/roe-ai/vectorless-chatbot
演示应用: https://vectorless-chatbot.vercel.app/
<p>工作原理:
1. 选择最佳文档 – 向大型语言模型(LLM)提供高层次描述和文档名称。它会选择使用哪些文档。
2. 选择最佳页面 – 代理会浏览文档页面,并提取出与您的问题最相关的页面。
3. 收集并回答 – 代理从第二步中获取所有相关页面,并给出最终答案。
<p>优势:
1. 比向量更具可预测性。您可以准确告诉代理您希望如何分析文件。
2. 您可以提出抽象问题,例如:“在风险方面,NVIDIA与AMD相比如何?”
3. 您可以提出汇总问题,例如:“这份SOC 2报告中有多少个问题被标记为负面?”
4. 本质上支持多模态问题和文档。
<p>劣势:
1. 为了在可扩展的设置中工作,第一步依赖于文档的高质量元数据。
2. 如果用户提出简单的后续问题,第二步可能会浪费资源,因为上下文可以被重用。
3. 比向量搜索聊天速度慢。
<p>如何扩展:
1. 我们设想通过文本转SQL的结构化元数据检索,根据用户在第一步中的问题定位文档路径。
2. 第二步可以通过缓存来改进。我们设想在文档被查询一次后,可以存储、演变并利用内容目录,以应对未来的问题。
人类是有缺陷的。这是我在使用大型语言模型(LLMs)时反复注意到的。<p>将论坛帖子与普通大型语言模型的输出进行比较,你会发现LLMs展现出十倍的同情心和友好。人们在五分钟后就停止倾听,存在偏见,还有其他动机。每当我回到与其他人交谈时,我都会想:“这个人怎么会有朋友呢?”<p>与现实生活中与人交谈的情况并无不同。<p>与这些人相处时,他们常常会过度使用一种谬论:“好人是存在的,你只需要好好寻找。”